Applied Physics A

, 124:780 | Cite as

Crystallization and luminescence properties of various Eu3+ content doped Al2O3 prepared by sol–gel method

  • Peijing TianEmail author
  • Shimei Zhu
  • Jian Yuan
  • Weihong ZhengEmail author
  • Hong Li
  • Mou Zhang


Eu3+ doped alumina has been prepared by sol–gel method. And the crystallization and luminescence properties of the samples were studied by DSC, XRD, Raman, and emission spectra. The structure analysis showed boehmite precipitated after drying at 90 °C, the single γ-Al2O3 formed when calcined at 500 °C, and the polycrystalline including EuAlO3 and α-Al2O3 were observed at 1150 °C. Emission spectra showed that the quenching concentration of Eu3+ ion is different after heat treatment at 90 °C, 500 °C, and 1150 °C. And for the samples with same Eu3+ content, the maximum luminescence intensity is always observed in sample calcined at 500 °C, while the minimum at 1150 °C.



This work was supported by China Scholarship Council (no. 201506955051) and National Natural Science Foundation of China (nos. 51772224 and 51372179). The authors would like to thank Professor Lothar Wondraczek and Doctor Lenka Müller at University of Jena for their support of preliminary work.


  1. 1.
    D. Pauee, R. Tertian, R. Biais, Research on the constitution of alumina gels. Bull. Soc. Chim. Fr. 10, 1301 (1958)Google Scholar
  2. 2.
    W.H. Gitzen, Alumina as a Ceramic Material. Am. Ceram. Soc. 9, 51–84 (1970)Google Scholar
  3. 3.
    B.E. Yoldas, Alumina gels that form porous transparent Al2O3. J. Muter. Sci. 10, 1856–1860 (1975)CrossRefADSGoogle Scholar
  4. 4.
    B.E. Yoldas, Alumina sol preparation from alkoxides. Am. Cerum. Soc. Bull. 54, 289–290 (1975)Google Scholar
  5. 5.
    B.E. Yoldas, Hydrolysis of aluminium alkoxides and bayerite conversion. J. Appl. Chem. Biotech. 23, 803–809 (1973)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Electrochemical detection of prostate-specific antigen based on gold colloids/alumina derived sol–gel film. Thin Solid Films 516, 1803–1808 (2008)CrossRefADSGoogle Scholar
  7. 7.
    C.A. Milea, E. Ienei et al., Sol–gel Al2O3 powders-matrix in solar thermal absorbers. J. Sol–Gel. Sci. Technol. 67, 112–120 (2013)CrossRefGoogle Scholar
  8. 8.
    J.M.A. Caiut, S.J.L. Ribeiro et al., Synthesis and luminescence properties of water dispersible Eu3+-doped boehmite nanoparticles. Nanotechnology 18, 455605 (2007)CrossRefGoogle Scholar
  9. 9.
    A.C. Pierre, D.R. Uhlmann, Gelation of aluminum hydroxide sols. J. Am. Cerum. Soc. 70, 28–32 (1987)CrossRefGoogle Scholar
  10. 10.
    A.C. Pierre, D.R. Uhlmann, Amorphous aluminum hydroxide gels. J. Non-Cryst. Solids 82, 271–276 (1986)CrossRefADSGoogle Scholar
  11. 11.
    N. K.Tadanaga, Katata et al., Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method. J. Am. Ceram. Soc. 80, 3213–3216 (1997)CrossRefGoogle Scholar
  12. 12.
    M. Nogami, K. Nagasaka, Toughened glass-ceramics containing ZrO2 and Al2O3 prepared by the sol–gel process from metal alkoxides. J. Non-Cryst. Solids 100, 298–302 (1988)CrossRefADSGoogle Scholar
  13. 13.
    M. Sales, J. Alarcon, Crystallization of sol–gel-derived glass ceramic powders in the CaO–MgO–Al2O3–SiO2 system. J. Mater. Sci. 29, 5153–5157 (1994)CrossRefADSGoogle Scholar
  14. 14.
    B. Hu, M. Yao, et. al., Optical properties of amorphous Al2O3 thin films prepared by a sol–gel process. Ceram. Int. 40, 14133–14139 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Onishi, T. Nakamura et al., Solubility limit and luminescence properties of Eu3+ ions in Al2O3 powder. J. Lumin. 176, 266–271 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Radonjic, V. Srdic et al., Relationship between the microstructure of boehmite gels and their transformation to alpha-alumina. Mater. Chem. Phys. 33, 298–306 (1993)CrossRefGoogle Scholar
  17. 17.
    S. Stojadinović, N. Tadić, R. Vasilić, Photoluminescence of Sm2+/Sm3+ doped Al2O3 coatings formed by plasma electrolytic oxidation of aluminum. J. Lumin. 192, 110–116 (2017)CrossRefGoogle Scholar
  18. 18.
    G.N. van den Hoven, R. J. I., M. Koper, A. Polman, Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon. Appl. Phys. Lett. 68, 1886–1888 (1996)CrossRefADSGoogle Scholar
  19. 19.
    K. Wörhoff, M. Pollnau, Rare-earth-ion-doped Al2O3 for integrated optical amplification. Proc. SPIE Int. Soc. Opt. Eng. 7604, 239–250 (2017)Google Scholar
  20. 20.
    C. Falcony, A. Ortiz et al., Luminescent characteristics of Tb doped Al2O3 films deposited by spray pyrolysis. J. Electrochem. Soc. 139, 267–271 (1992)CrossRefGoogle Scholar
  21. 21.
    E.H. Penilla, Y. Kodera, J.E. Garay, Blue–green emission in terbium-doped alumina (Tb:Al2O3) transparent ceramics. Adv. Funct. Mater. 23, 6036–6043 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Gui, Q. Yang et al., Spectroscopic properties of neodymium-doped alumina (Nd3+:Al2O3) translucent ceramics. J. Lumin. 184, 232–234 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. He, J. He et al., Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing. J. Colloid Interf. Sci. 496, 8–15 (2017)CrossRefADSGoogle Scholar
  24. 24.
    B. Dong, T. Yang, M.K. Lei, Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3. Sens. Actuat. B Chem. 123, 667–670 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Yu, Q. Yang et al., Synthesis of ordered mesoporous γ-Al2O3:Eu3+ with high luminous performance and thermal stability. J. Rare Earth. 29, 732–736 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Kumar, R. Prakash et al., Surface and spectral studies of Eu3+ doped α-Al2O3 synthesized via solution combustion synthesis. Adv. Powder Technol. 26, 1263–1268 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Cai, S. Rashkeev et al., Phase transformation mechanism between gamma- and theta-alumina. Phys. Rev. B 67, 2209–2219 (2003)CrossRefGoogle Scholar
  28. 28.
    P.A. Badkar, J.E.Bailey, The mechanism of simultaneous sintering and phase transformation in alumina. J. Mater. Sci. 11, 1794–1806 (1976)CrossRefADSGoogle Scholar
  29. 29.
    M. Nguefack, A.F. Popa et al., Preparation of alumina through a sol–gel process. synthesis, characterization, thermal evolution and model of intermediate boehmite. Phys. Chem. Chem. Phys. 5, 4279–4289 (2003)CrossRefGoogle Scholar
  30. 30.
    M. Digne, P. Sautet et al., Structure and stability of aluminum hydroxides: a theoretical study. J. Phys. Chem. B 106, 5155–5162 (2002)CrossRefGoogle Scholar
  31. 31.
    A. Roy, A.K. Sood, Phonons and fractons in sol–gel alumina: Raman study. Pramana 44, 201–209 (1995)CrossRefADSGoogle Scholar
  32. 32.
    J. Fankhänel, D. Silbernagl et al., Mechanical properties of boehmite evaluated by atomic force microscopy experiments and molecular dynamic finite element simulations, J. Nanomater. 2016, 1–13 (2016)CrossRefGoogle Scholar
  33. 33.
    C.J. Doss, R. Zallen, Raman studies of sol–gel alumina: finite-size effects in nanocrystalline AlO(OH). Phys. Rev. B 48, 15626–15637 (1993)CrossRefADSGoogle Scholar
  34. 34.
    C. Nico, R. Fernandes et al., Eu3+ luminescence in aluminophosphate glasses. J. Lumin. 145, 582–587 (2014)CrossRefGoogle Scholar
  35. 35.
    Z.N. Utegulov, M.A. Eastman et al., Structural characterization of Eu2O3–MgO–Na2O–Al2O3–SiO2 glasses with varying Eu2O3 content: Raman and NMR studies. J. Non-Cryst. Solids 315, 43–53 (2003)CrossRefADSGoogle Scholar
  36. 36.
    P. Alain, B. Piriou, High temperature Raman scattering and phase transition in EuAlO3. Solid State Commun. 17, 35–39 (1975)CrossRefADSGoogle Scholar
  37. 37.
    R. Chakrabarti, M. Das et al., Emission analysis of Eu3+:CaO–La2O3–B2O3 glass. J. Non-Cryst. Solids 353, 1422–1426 (2007)CrossRefADSGoogle Scholar
  38. 38.
    E.W.J.L. Oomenm, A.M.A. van Dongen, Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition. J. Non-Cryst. Solids 111, 205 (1989)CrossRefADSGoogle Scholar
  39. 39.
    H.G. Giesber, J. Ballato et al., Synthesis and characterization of optically nonlinear and light emitting Lanthanide borates. Inform. Sci. 149, 61–68 (2003)CrossRefGoogle Scholar
  40. 40.
    L.G.V. Uitert, L.F. Johnson, Energy transfer between rare-earth ion. J. Lumin 4, 3514–3522 (1966)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Shahe Research Institute of Glass TechnologyXingtaiChina

Personalised recommendations