Advertisement

Applied Physics A

, 124:742 | Cite as

Photoluminescence peculiarities of epitaxial structure with 2DEG layer designed for microwave detectors

  • A. ČerškusEmail author
  • A. Sužiedėlis
  • A. Lučun
  • M. Anbinderis
  • J. Gradauskas
  • E. Šutinys
Article
  • 84 Downloads

Abstract

We use two simple analysis methods to determine quantum efficiency and relative carrier recombination rates in GaAs layers of microwave detector. By means of these methods, we evaluate internal quantum efficiency as a function of pump power and temperature. It does not have the highest value at low temperatures as usual, but increases with temperature and reaches nearly 99% at liquid nitrogen or room temperature depending on pump power.

Notes

Acknowledgements

This work is supported in part by the Research Council of Lithuania (Grant no. LAT-03/2016) in the frame of National Science Program “Towards Future Technologies”. Authors are indebted to Angelė Steikūnienė and Gytis Steikūnas for sample fabrication.

References

  1. 1.
    T. Fleck, M. Schmidt, C. Klingshirn, Phys. Status Solidi (a) 198(1), 248 (2003).  https://doi.org/10.1002/pssa.200306607 ADSCrossRefGoogle Scholar
  2. 2.
    R. Westphäling, P. Ullrich, J. Hoffmann, H. Kalt, C. Klingshirn, K. Ohkawa, D. Hommel, J. Appl. Phys. 84(12), 6871 (1998).  https://doi.org/10.1063/1.368982 ADSCrossRefGoogle Scholar
  3. 3.
    K.R. Catchpole, K.L. Lin, P. Campbell, M.A. Green, A.W. Bett, F. Dimroth, Semicond. Sci. Technol. 19(11), 1232 (2004).  https://doi.org/10.1088/0268-1242/19/11/003 ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Nelson, R.G. Sobers, J. Appl. Phys. 49(12), 6103 (1978).  https://doi.org/10.1063/1.324530 ADSCrossRefGoogle Scholar
  5. 5.
    R.K. Ahrenkiel, Solid State Electron. 35(3), 239 (1992).  https://doi.org/10.1016/0038-1101(92)90228-5 ADSCrossRefGoogle Scholar
  6. 6.
    H. Gauck, T.H. Gfroerer, M.J. Renn, E.A. Cornell, K.A. Bertness, Appl. Phys. A 64(2), 143 (1997).  https://doi.org/10.1007/s003390050455 ADSCrossRefGoogle Scholar
  7. 7.
    C.E. Martinez, N.M. Stanton, A.J. Kent, D.M. Graham, P. Dawson, M.J. Kappers, C.J. Humphreys, J. Appl. Phys. 98(5), 053509 (2005).  https://doi.org/10.1063/1.2033144 ADSCrossRefGoogle Scholar
  8. 8.
    S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, H. Kudo, Appl. Phys. Lett. 83(24), 4906 (2003).  https://doi.org/10.1063/1.1633672 ADSCrossRefGoogle Scholar
  9. 9.
    A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, T. Mukai, Jpn. J. Appl. Phys. 45(11), 8719 (2006). http://iopscience.iop.org/1347-4065/45/11R/8719 ADSCrossRefGoogle Scholar
  10. 10.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Appl. Phys. Lett. 62(2), 131 (1993).  https://doi.org/10.1063/1.109348 ADSCrossRefGoogle Scholar
  11. 11.
    H.Y. Ryu, K.H. Ha, J.H. Chae, K.S. Kim, J.K. Son, O.H. Nam, Y.J. Park, J.I. Shim, Appl. Phys. Lett. 89(17), 171106 (2006).  https://doi.org/10.1063/1.2364273 ADSCrossRefGoogle Scholar
  12. 12.
    G.B. Ren, H. Summers, P. Blood, R. Perks, D. Bour, Proc. SPIE 4283, 78–84 (2001).  https://doi.org/10.1117/12.432626 ADSCrossRefGoogle Scholar
  13. 13.
    S.R. Johnson, D. Ding, J.B. Wang, S.Q. Yu, Y.H. Zhang, J. Vac. Sci. Technol. B 25(3), 1077 (2007).  https://doi.org/10.1116/1.2720864 CrossRefGoogle Scholar
  14. 14.
    J.B. Wang, D. Ding, S.R. Johnson, S.Q. Yu, Y.H. Zhang, Phys. Status Solidi (b) 244(8), 2740 (2007).  https://doi.org/10.1002/pssb.200675612 ADSCrossRefGoogle Scholar
  15. 15.
    A.W. Walker, S. Heckelmann, C. Karcher, O. Hhn, C. Went, M. Niemeyer, A.W. Bett, D. Lackner, J. Appl. Phys. 119(15), 155702 (2016).  https://doi.org/10.1063/1.4945772 ADSCrossRefGoogle Scholar
  16. 16.
    D. Ding, S.R. Johnson, J.B. Wang, S.Q. Yu, Y.H. Zhang, Proc. SPIE 6841, 68410D–8 (2007).  https://doi.org/10.1117/12.759592 CrossRefGoogle Scholar
  17. 17.
    Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Appl. Phys. Lett. 94(11), 111109 (2009).  https://doi.org/10.1063/1.3100773 ADSCrossRefGoogle Scholar
  18. 18.
    Y. Xing, L. Wang, D. Yang, Z. Wang, Z. Hao, C. Sun, B. Xiong, Y. Luo, Y. Han, J. Wang, H. Li, Sci. Rep. 7, 45802 (2017).  https://doi.org/10.1038/srep45082 CrossRefGoogle Scholar
  19. 19.
    S. Ašmontas, V. Kazlauskaitė, A. Sužiedėlis, J. Gradauskas, V. Derkach, J. Phys. Conf. Ser. 193(1), 012120 (2009).  https://doi.org/10.1088/1742-6596/193/1/012120 CrossRefGoogle Scholar
  20. 20.
    R. Heilman, G. Oelgart, Semicond. Sci. Technol. 5(10), 1040 (1990).  https://doi.org/10.1088/0268-1242/5/10/006 ADSCrossRefGoogle Scholar
  21. 21.
    G. Oelgart, G. Lippold, M. Proctor, D. Martin, F. Reinhart, Semicond. Sci. Technol. 6(12), 1120 (1991).  https://doi.org/10.1088/0268-1242/6/12/003 ADSCrossRefGoogle Scholar
  22. 22.
    A. Čerškus, J. Kundrotas, V. Nargelienė, A. Sužiedėlis, S. Ašmontas, J. Gradauskas, A. Johannessen, E. Johannessen, Lith. J. Phys. 51(4), 330 (2011).  https://doi.org/10.3952/lithjphys.51406 CrossRefGoogle Scholar
  23. 23.
    G.W. p’t Hooft, W.A.J.A. van der Poel, L.W. Molenkamp, C.T. Foxon, Phys. Rev. B 35, 8281 (1987).  https://doi.org/10.1103/PhysRevB.35.8281 ADSCrossRefGoogle Scholar
  24. 24.
    S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Phys. Rev. B 32(10), 6601 (1985).  https://doi.org/10.1103/PhysRevB.32.6601 ADSCrossRefGoogle Scholar
  25. 25.
    T.J. Badcock, M. Ali, T. Zhu, M. Pristovsek, R.A. Oliver, A.J. Shields, Appl. Phys. Lett. 109(15), 211107 (2016).  https://doi.org/10.1063/1.4964842 CrossRefGoogle Scholar
  26. 26.
    Y. Iwata, R.G. Banal, S. Ichikawa, M. Funato, Y. Kawakami, J. Appl. Phys. 117(7), 075701 (2015).  https://doi.org/10.1063/1.4908282 ADSCrossRefGoogle Scholar
  27. 27.
    Y.S. Yoo, T.M. Roh, J.H. Na, S.J. Son, Y.H. Cho, Appl. Phys. Lett. 102(21), 211107 (2013).  https://doi.org/10.1063/1.4807485 ADSCrossRefGoogle Scholar
  28. 28.
    G.B. Lin, D. Meyaard, J. Cho, E.F. Schubert, H. Shim, C. Sone, Appl. Phys. Lett. 100(16), 161106 (2012).  https://doi.org/10.1063/1.4704366 ADSCrossRefGoogle Scholar
  29. 29.
    T. Kohno, Y. Sudo, M. Yamauchi, K. Mitsui, H. Kudo, H. Okagawa, Y. Yamada, Jpn. J. Appl. Phys. 51(7R), 072102 (2012).  https://doi.org/10.1143/JJAP.51.072102 ADSCrossRefGoogle Scholar
  30. 30.
    J. Hader, J.V. Moloney, S.W. Koch, Appl. Phys. Lett. 96(22), 221106 (2010).  https://doi.org/10.1063/1.3446889 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Čerškus
    • 1
    • 2
    Email author
  • A. Sužiedėlis
    • 1
    • 2
  • A. Lučun
    • 1
  • M. Anbinderis
    • 1
  • J. Gradauskas
    • 1
    • 2
  • E. Šutinys
    • 2
  1. 1.Center for Physical Sciences and TechnologyVilniusLithuania
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations