Applied Physics A

, 124:745 | Cite as

Almond-West type grain and grain boundary conduction-modified dielectric relaxation in NdCoO3

  • S. KarmakarEmail author
  • D. Behera


In this present work, the bulk NdCoO3 was prepared via conventional solid-state synthesis route and its single-phase formation with a cubic crystal structure of space group Pm\(\bar {3}\)m [No. 221] were investigated with a perspective to understand its grain and grain-boundary contribution in dielectric and conduction processes. A general equation for grain and grain-boundary contribution in conduction-modified dielectric relaxation processes for ionically conducting material was proposed the first time and also correlated with our experimental observation,
$$\epsilon {\left( \omega \right)_{total}}={\epsilon _\infty }+\frac{{{\epsilon _{\text{s}}} - {\epsilon _\infty }}}{{1+{{\left( {\frac{{i\omega }}{{{\omega _r}}}} \right)}^{1 - \alpha }}}}+\frac{{{\sigma _0}}}{{{\epsilon _{0{{{\omega}}}}}}}\left[ {1+i{{\left( {\frac{\omega }{{{\omega _h}}}} \right)}^{{n_1}}}+i{{\left( {\frac{\omega }{{{\omega _h}}}} \right)}^{{n_2}}}} \right]$$
where (ωr, α), (ωh, n1) and (ωh, n2) couples explain the lattice and charge carriers responses for grain and grain boundary respectively. The relaxation-type conduction-modified dielectric behavior was observed from low to high-frequency region (100 Hz–1 MHz) and fitted conduction spectra with modified Jonscher power law which reveals the existence of grain and grain boundary effect with dc activation energy 0.86 eV. The impedance response was resolved into two contributions associated with intra-grain (bulk) and inter-grains (grain boundary) and the grain boundary resistance and capacitance exhibit a higher value than its grain counterparts. The suppressed and asymmetric semicircle in the Cole–Cole plot of impedance confirms the existence of the non-Debye-type of relaxation in NdCoO3.


  1. 1.
    K. Knížek, J. Hejtmánek, Z. Jirák, P. Tomeš, P. Henry, G. André, Phys. Rev. B 79, 134103 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Radaelli, S.-W. Cheong, Phys. Rev. B 66, 094408 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    K. Knížek, Z. Jirák, J. Hejtmánek, M. Veverka, M. Maryško, G. Maris, T.T.M. Palstra, Eur. Phys. J. B 47, 213 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    K. Knížek, Z. Jirák, J. Hejtmánek, P. Henry, G. André, J. Appl. Phys. 103, 07B703 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, T. Lorenz, Phys. Rev. B 78, 134402 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A. Baiker, P.E. Marti, P. Keusch, E. Fritsch, A. Reller, Journal of Catalysis. 146, 268 (1994)CrossRefGoogle Scholar
  7. 7.
    L. Fu, J.-F. Li, Key Eng. Mater. 434–435, 404 (2010)CrossRefGoogle Scholar
  8. 8.
    A.V. Salker, N.-J. Choi, J.-H. Kwak, B.-S. Joo, D.-D. Lee, Sens. Actuators B Chem 106, 461 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Ricote, N. Bonanos, F. Lenrick, R. Wallenberg, J. Power Sources 218, 313 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C.N.R. Rao, Md. Motin Seikh and Chandrabhas Narayana. Top. Curr. Chem. 234, 1–21 (2004)CrossRefGoogle Scholar
  11. 11.
    J.Q.J.S. Zhou, J.Q. Yan, J.B. Goodenough, Phys. ReV. B 71, 220103 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J.Q. Yan, J.S. Zhou, J.B. Goodenough, Phys. ReV. B 69, 134409 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Jonsher, J. Mater. Sci. 24, 372 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    A.K. Jonsher, J. Phys. D: Appl. Phys. 32, 57–70 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Cryst. 20, 79–83 (1987)CrossRefGoogle Scholar
  16. 16.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)ADSCrossRefGoogle Scholar
  17. 17.
    D.P. Almond, A.R. West, Solid State Ionics 23, 27 (1987)CrossRefGoogle Scholar
  18. 18.
    M. Gargouri, T. Mhiri, M. Bouachir, J.M. ReÂau, J. SeÂneÂgas, A. Daoud, Solid State Ionics 100, 225 (1997)CrossRefGoogle Scholar
  19. 19.
    A. Rahal, S. Megdiche Borchani, K. Guidara, M. Megdiche, R Soc. Open Sci. 5, 171472 (2018)CrossRefGoogle Scholar
  20. 20.
    F. Salam, J.C. Guintini, S. Sh., Soulayman, J.V. Sanchetta, Appl. Phys. A Mater. Sci. Process. 63, 447 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    A. Peláiz-Barranco, M.P. Gutiérrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    A. Ghosh, Phys. Rev. B 41, 1479 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    A.R. Long, Adv. Phys. 31, 553 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    A. Bekheet, N. Hegab, Vaccum 83, 391–396 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63 (2017)CrossRefGoogle Scholar
  26. 26.
    C.-G. Jianjun Liu, W.-G. Duan, W.N. Yin, R.W. Mei, Smith, J.R. Hardy, Phys. ReV. B 70, 144106 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, J. Appl. Phys. 111, 014113 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Sen, S.K. Mishra, S.K. Das, A. Tarafdar, J. Alloys Compd. 453, 395 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Nadeem, M.J. Akhtar, J. Appl. Phys. 104, 103713 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 93704 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations