Applied Physics A

, 124:776 | Cite as

An investigation on SnS layers for solar cells fabrication with CdS, SnS2 and ZnO window layers prepared by nebulizer spray method

  • A. M. S. Arulanantham
  • S. ValanarasuEmail author
  • A. KathalingamEmail author
  • Mohd. Shkir
  • Hyun-Seok Kim


The preparation of SnS, CdS, SnS2 and ZnO thin films by nebulizer spray method, and their characterization is reported. The size of crystallites, dislocation density, texture coefficient and strain were estimated using XRD data. SEM study revealed good surface morphology of films. Optical properties of deposited SnS, CdS, SnS2 and ZnO films were estimated using the optical absorption measurements. The calculated optical energy gaps of CdS, SnS2, ZnO and SnS films were, respectively, found as 2.45, 2.41, 3.2 and 1.45 eV. Hall effect measurements exhibited p-type conductivity for SnS and n-type conductivity for CdS, SnS2, ZnO thin films. The grown SnS thin films showed resistivity and carrier concentration as 0.0689 Ωcm and 1.04 × 1019 cm− 3, respectively. Heterojunction solar cells of FTO/CdS/SnS, FTO/SnS2/SnS, and FTO/ZnO/SnS were also fabricated and their properties studied. The fabricated FTO/ZnO/SnS heterojunction solar cell presented a superior performance with conversion efficiency (0.96%) greater than other structures.



The authors wish to express their sincere thanks to the Department of Science and Technology, New Delhi, India, for their financial assistance for the work support by the project number (DST-SERB) (SB/FTP/PS-131/2013). The author from KKU would like to express his gratitude to Research Center for Advanced Materials Science-King Khalid University, Saudi Arabia, for support.


  1. 1.
    T. Sall, B.M. Soucase, M. Mollar, J.A. Sans, SnS thin films prepared by chemical spray pyrolysis at different substrate temperatures for photovoltaic applications. J. Electron. Mater. 46, 1714–1719 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    P. Mani, K. Manikandan, J.J. Prince, Influence of molar concentration on triethanolamine (TEA) added tin sulfide (SnS) thin films by SILAR method. J. Mater. Sci. Mater. Electron. 27, 9255–9264 (2016)CrossRefGoogle Scholar
  3. 3.
    I. Kherchachi, A. Attaf, H. Saidi, A. Bouhdjer, H. Bendjedidi, Y. Benkhetta, R. Azizi, Structural, optical and electrical properties of Sn x S y thin films grown by spray ultrasonic. J. Semicond. 37, 032001 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl. Phys. Lett. 100, 032104 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    O.E. Ogah, K.R. Reddy, G. Zoppi, I. Forbes, R.W. Miles, Annealing studies and electrical properties of SnS-based solar cells. Thin Solid Films 519, 7425–7428 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications. Sol. Energy Mater. Sol. Cells 92, 1099–1104 (2008)CrossRefGoogle Scholar
  7. 7.
    K.R. Reddy, N.K. Reddy, R. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041–3046 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films 480, 452–456 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films. Semicond. Sci. Technol. 24, 025024 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Ichimura, H. Takagi, Electrodeposited ZnO/SnS heterostructures for solar cell application. Jpn J. Appl. Phys. 47, 7845 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    T. Miyawaki, M. Ichimura, Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells. Mater. Lett. 61, 4683–4686 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Devika, N.K. Reddy, K. Ramesh, F. Patolsky, K. Gunasekhar, Weak rectifying behaviour of p-SnS/n-ITO heterojunctions. Solid-State Electron. 53, 630–634 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C.-C. Huang, Y.-J. Lin, C.-J. Liu, Y.-W. Yang, Photovoltaic properties of n-type SnS contact on the unpolished p-type Si surfaces with and without sulfide treatment. Microelectron. Eng. 110, 21–24 (2013)CrossRefGoogle Scholar
  14. 14.
    J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956)ADSCrossRefGoogle Scholar
  15. 15.
    J. Singh, R. Bedi, Electrical properties of flash-evaporated tin selenide films. Thin Solid Films 199, 9–12 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    M.H. Vishkasougheh, B. Tunaboylu, Simulation of high efficiency silicon solar cells with a hetero-junction microcrystalline intrinsic thin layer. Energy Convers. Manag. 72, 141–146 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films. J. Mater. Sci. Mater. Electron. 29, 12899–12909 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Influence of carrier gas pressure on nebulizer spray deposited tin disulfide thin films. J. Mater. Sci. Mater. Electron. 29, 11358–11366 (2018)CrossRefGoogle Scholar
  19. 19.
    K.D.A. Kumar, V. Ganesh, S. Valanarasu, M. Shkir, I. Kulandaisamy, A. Kathalingam, S. AlFaify, Effect of solvent on the key properties of Al doped ZnO films prepared by nebulized spray pyrolysis technique. Mater. Chem. Phys. 212, 167–174 (2018)CrossRefGoogle Scholar
  20. 20.
    N. Kavitha, R. Chandramohan, S. Valanarasu, T. Vijayan, S.R. Rosario, A. Kathalingam, Effect of film thickness on the solar cell performance of CBD grown CdS/PbS heterostructure. J. Mater. Sci. Mater. Electron. 27, 2574–2580 (2016)CrossRefGoogle Scholar
  21. 21.
    V. Robles, J. Trigo, C. Guillén, J. Herrero, Structural, chemical, and optical properties of tin sulfide thin films as controlled by the growth temperature during co-evaporation and subsequent annealing. J. Mater. Sci. 48, 3943–3949 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    N. Lehraki, M. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Curr. Appl. Phys. 12, 1283–1287 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    N.K. Reddy, K.R. Reddy, Growth of polycrystalline SnS films by spray pyrolysis. Thin Solid Films 325, 4–6 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P. Nair, A. Garcia-Angelmo, M. Nair, Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells. Phys. Status Solidi (a) 213, 170–177 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, Properties of p-type SnS thin films prepared by chemical bath deposition. Chalcogenide Lett. 7, 685 (2010)Google Scholar
  26. 26.
    M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3 + doping. Sci. Rep. 7, 16091 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Shkir, S. AlFaify, I.S. Yahia, M.S. Hamdy, V. Ganesh, H. Algarni, Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J. Nanopart. Res. 19, 328 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    T.S. Reddy, M.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680–95692 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Shkir, M. Kilany, I.S. Yahia, Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923–14931 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, S. AlFaify, Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 2018, 1–10 (2018)Google Scholar
  31. 31.
    S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: a good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    M. Shkir, I.S. Yahia, V. Ganesh, H. Algarni, S. AlFaify, Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater. Lett. 176, 135–138 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, R. Darwish, Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. CrossRefGoogle Scholar
  34. 34.
    M. Shaban, M. Mustafa, A. El Sayed, Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater. Sci. Semicond. Process. 56, 329–343 (2016)CrossRefGoogle Scholar
  35. 35.
    M.S. Khan, A. Aziz, S.A. Rahman, Z.R. Khan, Spectroscopic studies of sol–gel grown CdS nanocrystalline thin films for optoelectronic devices. Mater. Sci. Semicond. Process. 16, 1894–1898 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids, G. Mezinskis, Structural and electrical properties of SnS2 thin films. Mater. Chem. Phys. 173, 52–61 (2016)CrossRefGoogle Scholar
  37. 37.
    K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J. Mater. Sci. Mater. Electron. 29, 887–897 (2018)CrossRefGoogle Scholar
  38. 38.
    R. Zhang, P.-G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Arulanantham, S. Valanarasu, K. Jeyadheepan, V. Ganesh, M. Shkir, Development of SnS (FTO/CdS/SnS) thin films by nebulizer spray pyrolysis (NSP) for solar cell applications. J. Mol. Struct. 1152, 137–144 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    S. Navale, A. Mane, M. Chougule, N. Shinde, J. Kim, V. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014)CrossRefGoogle Scholar
  42. 42.
    D.B. Potter, M.J. Powell, J.A. Darr, I.P. Parkin, C.J. Carmalt, Transparent conducting oxide thin films of Si-doped ZnO prepared by aerosol assisted CVD. RSC Adv. 7, 10806–10814 (2017)CrossRefGoogle Scholar
  43. 43.
    S. Polivtseva, I.O. Acik, A. Katerski, A. Mere, V. Mikli, M. Krunks, Spray pyrolysis deposition of SnxSy thin films. Energy Procedia 60, 156–165 (2014)CrossRefGoogle Scholar
  44. 44.
    T. Sall, M. Mollar, B. Marí, Substrate influences on the properties of SnS thin films deposited by chemical spray pyrolysis technique for photovoltaic applications. J. Mater. Sci. 51, 7607–7613 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    E. Turan, M. Kul, A.S. Aybek, M. Zor, Structural and optical properties of SnS semiconductor films produced by chemical bath deposition. J. Phys. D Appl. Phys. 42, 245408 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    A. Arulanantham, S. Valanarasu, K. Jeyadheepan, A. Kathalingam, I. Kulandaisamy, Effect of sulfur concentration on the properties of tin disulfide thin films by nebulizer spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 18675–18685 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Kwoka, B. Lyson-Sypien, A. Kulis, M. Maslyk, M.A. Borysiewicz, E. Kaminska, J. Szuber, Surface properties of nanostructured, porous ZnO thin films prepared by direct current reactive magnetron sputtering. Materials 11, 131 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    V. An, M. Dronova, A. Zakharov, Optical and AFM studies on p-SnS thin films deposited by magnetron sputtering. Chalcogenide Lett. 12, 483–487 (2015)Google Scholar
  49. 49.
    S. Cheng, Y. He, G. Chen, E.-C. Cho, G. Conibeer, Influence of EDTA concentration on the structure and properties of SnS films prepared by electro-deposition. Surf. Coat. Technol. 202, 6070–6074 (2008)CrossRefGoogle Scholar
  50. 50.
    M. Shkir, I.S. Yahia, V. Ganesh, Y. Bitla, I.M. Ashraf, A. Kaushik, S. AlFaify, A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Scientific Reports 8, 13806 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    A. Yadav, M. Barote, E. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci. 12, 1173–1177 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films 520, 4898–4901 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    T. Vimalkumar, N. Poornima, C.S. Kartha, K. Vijayakumar, Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films. Mater. Sci. Eng. B 175, 29–35 (2010)CrossRefGoogle Scholar
  54. 54.
    K.S. Kumar, C. Manoharan, S. Dhanapandian, A.G. Manohari, T. Mahalingam, Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik-Int. J. Light Electr. Opt. 125, 3996–4000 (2014)CrossRefGoogle Scholar
  55. 55.
    A. Zaier, F. Lakfif, A. Kabir, S. Boudjadar, M. Aida, Effects of the substrate temperature and solution molarity on the structural opto-electric properties of ZnO thin films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 12, 207–211 (2009)CrossRefGoogle Scholar
  56. 56.
    N.K. Reddy, K.R. Reddy, Electrical properties of spray pyrolytic tin sulfide films. Solid-State Electron. 49, 902–906 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)CrossRefGoogle Scholar
  58. 58.
    M. Barote, A. Yadav, T. Chavan, E. Masumdarb, Characterization and photoelectrochemical properties of chemical bath deposited n-PbS thin films. Digest J. Nanomater. Biostruct. (DJNB) 6, 3 (2011)Google Scholar
  59. 59.
    J.-U.W. Hsu, A.P. Hu, Determining the variable inductance range for an LCL wireless power pick-up, in: Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference on, IEEE, (2007), pp. 489–492Google Scholar
  60. 60.
    J.C. Li, Z.X. Wei, W.Q. Huang, L.L. Ma, W. Hu, P. Peng, G.F. Huang, Interfacial interactions in monolayer and few-layer SnS/CH3NH3PbI3 Perovskite van der Waals heterostructures and their effects on electronic and optical properties. Chem Phys Chem 19, 291–299 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsArul Anandar CollegeKarumathurIndia
  2. 2.Millimeter-Wave Innovation Technology Research Center (MINT)Dongguk University-SeoulSeoulSouth Korea
  3. 3.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Division of Electronics and Electrical EngineeringDongguk UniversitySeoulSouth Korea
  5. 5.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia

Personalised recommendations