Applied Physics A

, 124:765 | Cite as

Optical and mechanical studies on free standing amorphous anodic porous alumina formed in oxalic and sulphuric acid

  • P. Ramana ReddyEmail author
  • K. M. Ajith
  • N. K. Udayashankar


Anodic porous alumina (APA) membranes with a uniform pore arrangement typically serve as an ideal template for formation of different types of nanostructured materials. In the present work, APA membranes were synthesized using two-step anodization in 0.3 M of oxalic and 0.3 M of sulphuric acid under the anodization potential of 40 V and 20 V respectively, at 8 °C. Alumina nanowires (ANW) were synthesized by the chemical etching of the APA membranes using phosphoric acid solution. The optical absorbance and reflectance measurements of APA membranes were performed on a spectrometer in the wavelength range of 200–600 nm. The band-gap energy (3.7 and 4.3 eV for oxalic and sulphuric acid) of APA membranes was determined from UV–visible absorption data. The photoluminescence (PL) investigations have revealed the presence of F and F+ defect centers, which could be attributes to oxygen vacancy-related defect centers in oxalic (483 and 466 nm) and sulphuric (423 and 421 nm) alumina. The mechanical properties of amorphous APA membranes were investigated by micro- and nanoindentation techniques. The results indicate that highest hardness (7.70 GPA) and Young’s modulus (138.80 GPA) for sulphuric alumina compared with oxalic alumina. In sulphuric alumina, more number of ANW were observed compared with oxalic alumina.



The authors are thankful to Industrial Research & Consultancy Center, Indian Institute of Technology Bombay, India for supporting with the nanoindentation facility.


The one of the author P. Ramana Reddy wishes to acknowledge MHRD for their financial support throughout the research work.


  1. 1.
    L. Zaraska, G.D. Sulka, M. Jaskula, J. Solid State Electrochem. 15, 2427 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Appl. Phys. A 96, 603 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    G.S. Huang, X.L. Wu, Y.C. Cheng, J.C. Shen, A.P. Huang, P.K. Chu, Appl. Phys. A 86, 463 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A.I. Vorobjova, D.L. Shimanovich, Е.А. Outkina, А.А. Khodin, Appl Phys A 124, (2018)Google Scholar
  5. 5.
    Y. Peng, Q. Chen, Appl. Phys. A 105, 841 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    W.J. Stępniowski, M. Salerno, Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition (One Central Press, Manchester, UK, 2014)Google Scholar
  7. 7.
    M. Ghrib, R. Ouertani, M. Gaidi, N. Khedher, M.B. Salem, H. Ezzaouia, Appl. Surf. Sci. 258, 4995 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.H. Rahimi, S. Saramad, S.H. Tabaian, S.P. Marashi, A. Zolfaghari, M. Mohammadalinezhad, Appl. Surf. Sci. 256, 12 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, J. Membr. Sci. 319, 192 (2008)CrossRefGoogle Scholar
  10. 10.
    G.D. Sulka, W.J. Stępniowski, Electrochim. Acta 54, 3683 (2009)CrossRefGoogle Scholar
  11. 11.
    W.J. Stępniowski, Z. Bojar, Surf. Coat. Technol. 206, 265 (2011)CrossRefGoogle Scholar
  12. 12.
    A.K. Singh, B. Das, P. Sen, S.K. Bandopadhyay, K. Mandal, IEEE Trans. Magn. 50, 1 (2014)Google Scholar
  13. 13.
    J. Sung, H. Moon, J.H. Bahng, J.-Y. Koo, B. Kim, in MRS Proceedings (Cambridge Univ Press, 2004), pp. M11–34Google Scholar
  14. 14.
    G.D. Sulka, L. Zaraska, W.J. Stepniowski, Encycl. Nanosci. Nanotechnol. 11, 261 (2011)Google Scholar
  15. 15.
    A.K. Singh, K. Mandal, J. Nanosci. Nanotechnol. 14, 5036 (2014)CrossRefGoogle Scholar
  16. 16.
    A.K. Singh, K. Mandal, J. Appl. Phys. 117, 105101 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Brevnov, G.R. Rao, G.P. López, P.B. Atanassov, Electrochim. Acta 49, 2487 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Wang, C.-W. Wang, Y. Li, W.-M. Liu, Thin Solid Films 516, 7689 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Serry, A. Gamal, M. Shaban, A. Sharaf, IET Micro & Nano Letters 8, 775 (2013)CrossRefGoogle Scholar
  20. 20.
    G.H. Li, Y. Zhang, Y.C. Wu, L.D. Zhang, J. Phys.: Condens. Matter. 15, 8663 (2003)ADSGoogle Scholar
  21. 21.
    A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, J. Appl. Phys. 84, 6023 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Xia, L. Riester, B.W. Sheldon, W.A. Curtin, J. Liang, A. Yin, J.M. Xu, Rev. Adv. Mater. Sci 6, 131 (2004)Google Scholar
  23. 23.
    K.Y. Ng, Y. Lin, A.H.W. Ngan, Acta Mater. 57, 2710 (2009)CrossRefGoogle Scholar
  24. 24.
    A.P. Samantilleke, J.O. Carneiro, S. Azevedo, T. Thuy, V. Teixeira, in Journal of Nano Research (Trans Tech Publ, 2013), pp. 77–89CrossRefGoogle Scholar
  25. 25.
    G.G. Khan, A.K. Singh, K. Mandal, J. Lumin. 134, 772 (2013)CrossRefGoogle Scholar
  26. 26.
    K.S. Choudhari, P. Sudheendra, N.K. Udayashankar, J. Porous Mater. 19, 1053 (2012)CrossRefGoogle Scholar
  27. 27.
    P.R. Reddy, K.M. Ajith, N.K. Udayashankar, Ceram. Int. 42, 17806 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Zaraska, W.J. Stępniowski, G.D. Sulka, E. Ciepiela, M. Jasku\la, Appl. Phys. A 114, 571 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P.R. Reddy, K.M. Ajith, N.K. Udayashankar, J. Mater. Sci.: Mater. Electron. 27, 5331 (2016)Google Scholar
  30. 30.
    W.J. Stępniowski, J. Choi, H. Yoo, M. Michalska-Domańska, P. Chilimoniuk, T. Czujko, Mater. Lett. 164, 176 (2016)CrossRefGoogle Scholar
  31. 31.
    F. Laatar, M. Hassen, C. Amri, F. Laatar, A. Smida, H. Ezzaouia, J. Lumin. 178, 13 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Majid, T. Ijaz, M. Farooq, S. Riaz, S. Naseem, in Proc. 2013 World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research (ANBRE) (2013)Google Scholar
  33. 33.
    I.A. Vrublevsky, K.V. Chernyakova, A. Ispas, A. Bund, S. Zavadski, Thin Solid Films 556, 230 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    W.J. Stępniowski, J. Choi, H. Yoo, K. Oh, M. Michalska-Domańska, P. Chilimoniuk, T. Czujko, R. Lyszkowski, S. Jóźwiak, Z. Bojar, and others. J. Electroanal. Chem. 771, 37 (2016)CrossRefGoogle Scholar
  35. 35.
    W.J. Stępniowski, M. Norek, B. Budner, M. Michalska-Domańska, A. Nowak-Stępniowska, A. Bombalska, M. Kaliszewski, A. Mostek, S. Thorat, M. Salerno, et al. Thin Solid Films 598, 60 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M. Shaban, J. Spectrosc. 2016, (2016)Google Scholar
  37. 37.
    H.M. Chen, C.F. Hsin, R.-S. Liu, S.-F. Hu, C.-Y. Huang, J. Electrochem. Soc. 154, K11 (2007)CrossRefGoogle Scholar
  38. 38.
    J. Li, Z. Zhu, Y. Hu, J. Zheng, J. Chu, W. Huang, J. Nanomater. 2014, 51 (2014)Google Scholar
  39. 39.
    A. Santos, M. Alba, M.M. Rahman, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  40. 40.
    G.S. Huang, X.L. Wu, L.W. Yang, X.F. Shao, G.G. Siu, P.K. Chu, Appl. Phys. A 81, 1345 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    G. Tao, M. Guo-Wen, Z. Li-De, Chin. Phys. Lett. 20, 713 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    T.-H. Fang, T.H. Wang, C.-H. Liu, L.-W. Ji, S.-H. Kang, Nanoscale Res. Lett. 2, 410 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    N. Tsyntsaru, B. Kavas, J. Sort, M. Urgen, J.-P. Celis, Mater. Chem. Phys. 148, 887 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Alcala, P. Skeldon, G.E. Thompson, A.B. Mann, H. Habazaki, K. Shimizu, Nanotechnology 13, 451 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    J.K. Han, J. Kim, Y.C. Choi, K.-S. Chang, J. Lee, H.J. Youn, S.D. Bu, Physica E: Low-Dimens. Syst. Nanostruct. 36, 140 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    C.H. Voon, M.N. Derman, in Advanced Materials Research (Trans Tech Publ, 2013), pp. 610–614Google Scholar
  47. 47.
    Y.F. Mei, G.G. Siu, R.K. Fu, P. Chen, X.L. Wu, T.F. Hung, P.K. Chu, Y. Yang, J. Appl. Phys. 97, 034305 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    T. Kondo, N. Kitagishi, T. Fukushima, T. Yanagishita, H. Masuda, Mater. Express 6, 363 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of sciences and humanitiesVFSTR Deemed to be UniversityGunturIndia
  2. 2.Department of PhysicsNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations