Advertisement

Applied Physics A

, 124:769 | Cite as

Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications

  • N. Senthilkumar
  • Sunirmal Sheet
  • Y. Sathishkumar
  • Yang Soo LeeEmail author
  • Siew-Moi Phang
  • Vengadesh PeriasamyEmail author
  • G. Gnana kumarEmail author
Article

Abstract

Titanium oxide (TiO2)/reduced graphene oxide (rGO) composite nanofibers were synthesized via an electrospinning technique and its potential electrochemical activity constructed its realization as an efficient anode catalyst in biophotovoltaic cells (BPV) with Chlorella vulgaris. The uniform adherence of GO sheets over the hydrolyzed Ti4+ ions, followed by its simultaneous reduction and crystallization, yielded the TiO2/rGO composite nanofibers. The strong interconnection among the nanofibers and the intimate contact between rGO and TiO2 in TiO2/rGO composite improved the efficient electron transportation paths, facilitating the higher oxidation and continuous and stable currents as substantiated, respectively, from the cyclic voltammetry and chronoamperometry studies. By coupling the continuous electron conduction paths, proficient cell interaction, and elevated structural and chemical stabilities, TiO2/rGO demonstrated the BPV power density of 34.66 ± 1.3 mW m−2 with excellent durability, outperforming the BPV performances of previous reports. Thus the fundamental understanding achieved on the influences of nanocatalytic system in green energy generation opens up the new horizon of anticipation towards the development of sustainable and high-performance BPVs.

Notes

Acknowledgements

This study was supported by the Science and Engineering Research Board (SERB), New Delhi, India, Major Project Grant No.: EMR/2015/000912. Dr. Phang was supported by HICoE MOHE:IOES-2014F Grant and Newton Prize 2017 (IF008-2018).

References

  1. 1.
    R.W. Bradley, P. Bombelli, S.J.L. Rowden, C.J. Howe, Biochem. Soc. Trans. 40, 1302–1307 (2012)CrossRefGoogle Scholar
  2. 2.
    G.S.A. Nava, V.H.C. Flores, D.L.C. Chavez, R.D. Chavez, N.J. Scarlat, J.F. Dallemand, R. Parra, Renew. Sustain. Energy Rev. 32, 140–153 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Oey, A.L. Sawyer, I.L. Ross, B. Hankamer, Plant Biotechnol. J. 14, 1487–1499 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Tailong, L. Zhiqiang, C. Minghua, Proc. Eng. 29, 64–68 (2012)CrossRefGoogle Scholar
  5. 5.
    A.M. Hermann, Sol. Energy Mater. Sol. Cells 55, 75–81 (1998)CrossRefGoogle Scholar
  6. 6.
    K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2, 1–8 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Okamoto, Y. Nitta, T. Yamaguchi, Y. Hamakawa, Sol. Energy Mater. 2, 313–325 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. McCormick, P. Bombelli, A.M. Scott, A.J. Philips, A.G. Smith, A.C. Fisher, C.J. Howe, Energy Environ. Sci. 4, 4699–4709 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Shahparnia, M. Packirisamy, P. Juneau, V. Zazubovich, Technology 3, 119–126 (2015)CrossRefGoogle Scholar
  10. 10.
    B.D. Caprariis, P.D. Filippis, A.D. Battista, L.D. Palma, M. Scarsella, Chem. Eng. Trans. 38, 523–528 (2014)Google Scholar
  11. 11.
    F.L. Ng, M.M. Jaafar, S.M. Phang, Z. Chan, N.A. Salleh, S.Z. Azmi, K. Yunus, A.C. Fisher, V. Periasamy, Sci. Rep. 4, 1–7 (2014)Google Scholar
  12. 12.
    N. Sekar, Y. Umasankar, R.P. Ramasamy, Phys. Chem. Chem. Phys. 16, 7862–7871 (2014)CrossRefGoogle Scholar
  13. 13.
    J.O. Calkins, Y. Umasankar, H.O. Neill, R.P. Ramasamy, Energy Environ. Sci. 6, 1891–1900 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Zou, J. Pisciotta, R.B. Billmyre, I.V. Baskakov, Biotechnol. Bioeng. 104, 939–946 (2009)CrossRefGoogle Scholar
  15. 15.
    G.G. Kumar, C.J. Kirubaharan, S. Udhayakumar, C. Karthikeyan, K.S. Nahm, Ind. Eng. Chem. Res. 53, 16883–16893 (2014)CrossRefGoogle Scholar
  16. 16.
    G.G. Kumar, C.J. Kirubaharan, S. Udhayakumar, K. Ramachandran, C. Karthikeyan, R. Renganathan, K.S. Nahm, ACS Sustain. Chem. Eng. 2, 2283–2290 (2014)CrossRefGoogle Scholar
  17. 17.
    C.H. Liao, C.W. Huang, J.C.S. Wu, Catalysts 2, 490–516 (2012)CrossRefGoogle Scholar
  18. 18.
    A.S. Adeleye, A.A. Keller, Environ. Sci. Technol. 50, 12258–12265 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    R. Ramachandran, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G.G. Kumar, RSC Adv. 5, 76538–76547 (2015)CrossRefGoogle Scholar
  20. 20.
    S.E. Oh, B.E. Logan, Appl. Microbiol. Biotechnol. 70, 162–169 (2006)CrossRefGoogle Scholar
  21. 21.
    S.M. Phang, W.L. Chu, University of Malaya Algae Culture Collection, Catalogue of strains. Institute of postgraduate studies and Research Bibliographies and Research Guides: BPP. Bil 2 (1999)Google Scholar
  22. 22.
    X. Zhang, P.S. Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, S. Madhavi, J. Phys. Chem. C 116, 14780–14788 (2012)CrossRefGoogle Scholar
  23. 23.
    H.R. Pant, S.P. Adhikari, B. Pant, M.K. Joshi, H.J. Kim, C.H. Park, C.S. Kim, J. Colloid Interface Sci. 5, 457174–457179 (2015)Google Scholar
  24. 24.
    Y. Dai, Y. Jing, J. Zeng, Q. Qi, C. Wang, D. Goldfeld, C. Xu, Y. Zheng, Y. Sun, J. Mater. Chem. 21, 18174–18179 (2011)CrossRefGoogle Scholar
  25. 25.
    C.H. Kim, B.H. Kim, K.S. Yang, Carbon 50, 2472–2481 (2012)CrossRefGoogle Scholar
  26. 26.
    P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, O.N. Srivastava, Int. J. Hydrog. Energy 39, 16282–16292 (2014)CrossRefGoogle Scholar
  27. 27.
    T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, J. Alloys Compd. 615, 643–650 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Xu, P. Wang, B. Shen, Dig. J. Nanomater. Biostruct. 11, 15–22 (2016)Google Scholar
  29. 29.
    G.S.H. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim, R. Yousefi, F.J. Sheini, N.M. Huang, Int. J. Photoenergy 2014, 1–9 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Dai, Y. Sun, J. Yao, D. Ling, Y. Wang, H. Long, X. Wang, B. Lin, T.H. Zeng, Y. Sun, J. Mater. Chem. A 2, 1060–1067 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Angelaalincy, N. Senthilkumar, R. Karpagam, G.G. Kumar, B. Ashokkumar, P. Varalakshmi, ACS Omega 2, 3754–3765 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Hasan, E. Cevik, E. Sperling, M.A. Packer, D. Leech, L. Gorton, Adv. Energy Mater. 5, 1–11 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Driver, P. Bombelli, Catalyst 4, 13–15 (2011)Google Scholar
  34. 34.
    F.L. Ng, S.M. Phang, V. Periasamy, K. Yunus, A.C. Fisher, Adv. Mater. Res. 895, 116–121 (2014)CrossRefGoogle Scholar
  35. 35.
    F.L. Ng, S.M. Phang, V. Periasamy, K. Yunus, A.C. Fisher, PLoS One 9, 116–121 (2014)Google Scholar
  36. 36.
    T. Wenzel, D. Hartter, P. Bombelli, C.J. Howe, U. Steiner, Nat. Commun. 9, 1–9 (2018)CrossRefGoogle Scholar
  37. 37.
    L.B. Nohara, G.P. Filho, E.L. Nohara, M.U. Kleinke, M.C. Rezen, Mater. Res. 8, 281–286 (2005)CrossRefGoogle Scholar
  38. 38.
    C.C. Luhrs, C.D. Daskam, E. Gonzalez, J. Phillips, Materials 7, 3699–3714 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    N.K. Kang, B. Lee, G.G. Choi, M. Moon, M.S. Park, J. Lim, J.W. Yang, Korean J. Chem. Eng. 31, 861–867 (2014)CrossRefGoogle Scholar
  40. 40.
    K.C. Lemmer, A.C. Dohnalkova, D.R. Noguera, T.J. Donohue, J. Bacteriol. 97, 1649–1658 (2015)CrossRefGoogle Scholar
  41. 41.
    I.H. Park, P. Kim, G.G. Kumar, K.S. Nahm, Appl. Biochem. Biotechnol. 179, 1170–1183 (2016)CrossRefGoogle Scholar
  42. 42.
    C.C. Fu, T.C. Hung, W.T. Wu, T.C. Wen, C.H. Su, Biochem. Eng. J. 52, 175–180 (2010)CrossRefGoogle Scholar
  43. 43.
    V. Vello, S.M. Phang, W.L. Chu, N.A. Majid, P.E. Lim, S.K. Loh, J. Appl. Phycol. 26, 1399–1413 (2014)CrossRefGoogle Scholar
  44. 44.
    L.L. Tan, W.J. Ong, S.P. Chai, A.R. Mohamed, Nanoscale Res. Lett. 8, 465 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    V.M. Harik, Toxicol. Lett. 273, 69–85 (2017)CrossRefGoogle Scholar
  46. 46.
    O. Fokina, J. Eipper, L. Winandy, S. Kerzenmacher, R. Fischer, Bioresour. Technol. 175, 445–453 (2015)CrossRefGoogle Scholar
  47. 47.
    A.E. Franks, K.P. Nevin, Energies 3, 899–919 (2010)CrossRefGoogle Scholar
  48. 48.
    C.S. Butler, R. Nerenberg, Appl. Microbiol. Biotechnol. 86, 1399–1408 (2010)CrossRefGoogle Scholar
  49. 49.
    S. Oh, B. Min, B.E. Logan, Environ. Sci. Technol. 38, 4900–4904 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National UniversityJeonju-siRepublic of Korea
  3. 3.Institute of Ocean and Earth Sciences (IOES)University of MalayaKuala LumpurMalaysia
  4. 4.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  5. 5.Low Dimensional Materials Research Centre (LDMRC), Department of PhysicsUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations