Advertisement

Applied Physics A

, 124:735 | Cite as

The mixed spin-(1,3/2) Ising nanowire with core/inter-shell/outer-shell morphology

  • A. FeraounEmail author
  • M. Kerouad
Article
  • 52 Downloads

Abstract

Using the Monte Carlo method, we have examined the effect of the Hamiltonian parameters (the exchange couplings, the single ion anisotropy and the external magnetic field) on the magnetic properties (the magnetization, the susceptibility, the internal energy, the phase diagrams and the hysteresis behavior) of a hexagonal ferromagnetic or ferrimagnetic Ising nanowire with mixed spin-1 and spin-3/2. The system presents attractive magnetic phenomena like the compensation behavior and multiple hysteresis loops.

References

  1. 1.
    G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Appl. Phys. Lett. 82, 3053 (2003)CrossRefADSGoogle Scholar
  2. 2.
    N.S. Xu, S.E. Huq, Mater. Sci. Eng. R. 48, 47 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999)CrossRefADSGoogle Scholar
  4. 4.
    J.E. Wegrowe, D. Kelly, Y. Jaccard, P.H. Guittienne, J.P.H. Ansermet, Europhys. Lett. 45, 626 (1999)CrossRefADSGoogle Scholar
  5. 5.
    N. Lupu, L. Lostun, H. Chiriac, J. Appl. Phys. 107, 09 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Ramulu, R. Venu, S. Anandakumar, V.S. Rani, S. Yoon, C. Kim, Thin Solid Films 520, 5508 (2012)CrossRefADSGoogle Scholar
  7. 7.
    Z. Yang, Z. Li, L. Liu, L. Kong, J. Magn. Magn Mater. 323, 2674 (2011)CrossRefADSGoogle Scholar
  8. 8.
    X. Yuan, C. Du, G. Sun, N. Pan, Appl. Surf. Sci. 253, 4546 (2007)CrossRefADSGoogle Scholar
  9. 9.
    T. Liu, Y. Wu, H. Long, Z. Liu, Y. Zheng, A. Adeyeye, Thin Solid Films 505, 35 (2006)CrossRefADSGoogle Scholar
  10. 10.
    W. Jiang, X.-X. Li, L.-M. Liu, J.-N. Chen, F. Zhang, J. Magn. Magn. Mater. 353, 90 (2014)CrossRefADSGoogle Scholar
  11. 11.
    W. Jiang, X.-X. Li, A.-B. Guo, H.-Y. Guan, Z. Wang, K. Wang, J. Magn. Magn. Mater. 355, 309 (2014)CrossRefADSGoogle Scholar
  12. 12.
    D. Lv, F. Wang, R. Liu, Q. Xue, S. Li, J. Alloys Compd. 701, 935 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Feraoun, A. Zaim, M. Kerouad, Phys. B 445, 74 (2014)CrossRefADSGoogle Scholar
  14. 14.
    A. Feraoun, M. Kerouad, Comput. Condens. Matter 16, e00297 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, W. Wang, D. Lv, X. Zhao, T. Huang, Z. Wang, Phys. B Condens. Matter 541, 79 (2018)CrossRefADSGoogle Scholar
  16. 16.
    T. Kaneyoshi, Solid State Commun. 244, 51 (2016)CrossRefADSGoogle Scholar
  17. 17.
    A. Feraoun, A. Zaim, M. Kerouad, J. Phys. Chem. Solids 96–97, 75 (2016)CrossRefADSGoogle Scholar
  18. 18.
    R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Phys. B 472, 19 (2015)CrossRefADSGoogle Scholar
  19. 19.
    Z.D. Vatansever, Phys. Lett. A 381, 3450 (2017)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    W. Wang, J. Bi, R. Liu, X. Chen, J. Liu, Superlattices Microstruct. 98, 433 (2016)CrossRefADSGoogle Scholar
  21. 21.
    W. Wang, Y. Liu, Z. Gao, X. Zhao, Y. Yang, S. Yang, Phys. E Low Dimens. Syst. Nanostructures 101, 110 (2018)CrossRefADSGoogle Scholar
  22. 22.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)CrossRefADSGoogle Scholar
  23. 23.
    W. Wang, F.Z. DanLv, J. Bi, J. Chen, J. Magn. Magn. Mater. 385, 16 (2015)CrossRefADSGoogle Scholar
  24. 24.
    W. Wang, D. Chen, D. Lv, J. Liu, Q. Li, Z. Peng, J. Phys. Chem. Solids 108, 39 (2017)CrossRefADSGoogle Scholar
  25. 25.
    D. Lv, W. Wang, J. Liu, D. Guo, S. Li, J. Magn. Magn. Mater. 465, 348 (2018)CrossRefADSGoogle Scholar
  26. 26.
    J.-Y. Liang, C.-L. Zou, W. Jiang, X.-X. Li, Phys. E 69, 81 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Jiang, Z. Wang, A.-B. Guo, K. Wang, Y.-N. Wang, Phys. E 73, 250 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Si, F. Zhang, W. Jiang, Y.-L. Zhang, Phys. A 510, 641 (2018)CrossRefGoogle Scholar
  29. 29.
    K. Wanga, P. Yin, Y. Zhang, W. Jiang, Phys. A 505, 268 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W. Jiang, Y.-N. Wang, J. Magn. Magn. Mater. 426, 785 (2017)CrossRefADSGoogle Scholar
  31. 31.
    H.S.S.R. Matte, K.S. Subrahmanyam, C.N.R. Rao, J. Phys. Chem. C 113, 9982 (2009)CrossRefGoogle Scholar
  32. 32.
    C.N.R. Rao, K.S. Subrahmanyam, H.S.S.R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, Sci. Technol. Adv. Mater. 11, 054502 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, W. Wang, D. Lv, J. Liu, Z. Gao, Z. Wang, J. Phys. Chem. Solids 120, 109 (2018)CrossRefADSGoogle Scholar
  34. 34.
    C.-L. Zou, D.-Q. Guo, F. Zhang, J. Meng, H.-L. Miao, W. Jiang, Phys. E Low dimens. Syst. Nanostructures 104, 138 (2018)CrossRefADSGoogle Scholar
  35. 35.
    C. Wua, K.-L. Shi, Y. Zhang, W. Jiang, J. Magn. Magn. Mater. 465, 114 (2018)CrossRefADSGoogle Scholar
  36. 36.
    K. Shi, W. Jiang, A. Guo, K. Wang, W. Chuang, Phys. A 500, 11 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J.-M. Wang, W. Jiang, C.-L. Zhou, Z. Shi, W. Chuang, Superlattices Microstruct. 102, 359 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité Associée au CNRST-URAC: 08, Laboratoire de Physique des Matériaux et Modélisation des Systèmes (LP2MS), Faculty of SciencesUniversity Moulay IsmailMeknesMorocco

Personalised recommendations