Advertisement

Applied Physics A

, 124:733 | Cite as

Ultraviolet photodetector based on nanostructured ZnO-reduced graphene oxide composite

  • Qiaoqi Lu
  • Xinhua Pan
  • Weihao Wang
  • Yusong Zhou
  • Zhizhen Ye
Article
  • 47 Downloads

Abstract

Due to the special structure and electrical properties of graphene, the ultraviolet (UV) photodetectors based on ZnO nanorods (NRs) were optimized by electrostatic self-assembly with reduced graphene oxide (rGO). UV photodetectors based on ZnO NRs or ZnO–rGO nanocomposites (NCs) with high responsibility, sensitivity and good stability were fabricated by spin-coating method simply, which may be used for reference in manufacture of some big size device. Moreover, our work proves that the composite materials of ZnO and graphene have good prospects in the field of UV photodetector.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant nos. 51302244 and 91333203, and Zhejiang Provincial Natural Science Foundation of China under Grant no. LY17E020005.

Supplementary material

339_2018_2155_MOESM1_ESM.doc (13.2 mb)
Supplementary material 1 (DOC 13550 KB)

References

  1. 1.
    E. Monroy, F. Calle, J.L. Pau, E. Muñoz, F. Omnès, B. Beaumont, P. Gibart, J. Cryst. Growth 230, 537 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    E. Muñoz, E. Monroy, J.L. Pau, F. Calle, F. Omnès, P. Gibart, J. Phys. Condens. Matter. 13, 7115 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Z.R. Yu, M. Aceves-Mijares, Appl. Phys. Lett. 95, 081101 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    E. Monroy, F. Omnès, F. Calle, Semicond. Sci. Technol. 18, R33 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    D.C. Look, Mater. Sci. Eng. B80, 383 (2001)CrossRefGoogle Scholar
  6. 6.
    Z. Guo, D.X. Zhao, D.Z. Shen, F. Fang, J.Y. Zhang, B.H. Li, Cryst. Growth Des. 7, 2294 (2007)CrossRefGoogle Scholar
  7. 7.
    A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)CrossRefGoogle Scholar
  8. 8.
    M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop, Sens. Actuators B 195, 609 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    L.L. Shi, F. Wang, B.H. Li, X. Chen, B. Yao, D.X. Zhao, D.Z. Shen, J. Mater. Chem. C 2, 5005 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Dai, X.H. Pan, S.S. Chen, C. Chen, Z. Wen, H.H. Zhang, Z.Z. Ye, J. Mater. Chem. C 2, 4606 (2014)CrossRefGoogle Scholar
  12. 12.
    S.C. Rai, K. Wang, Y. Ding, J.K. Marmon, M. Bhatt, Y. Zhang, W.L. Zhou, Z.L. Wang, ACS Nano 9, 6419 (2015)CrossRefGoogle Scholar
  13. 13.
    D.S. Tsai, C.A. Lin, W.C. Lien, H.C. Chang, Y.L. Wang, J.H. He, ACS Nano 5, 7748 (2011)CrossRefGoogle Scholar
  14. 14.
    D.Z. Zhang, X.H. Gu, F.Y. Jing, F.L. Gao, J.R. Zhou, S.P. Ruan, J. Alloys Compd. 618, 551 (2015)CrossRefGoogle Scholar
  15. 15.
    S.S. Hullavarad, N.V. Hullavarad, P.C. Karulkar, A. Luykx, P. Valdivia, Nanoscale Res. Lett. 2, 161 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    K. Liu, M. Sakurai, M. Aono, Phys. Sens. 10, 8604 (2010)CrossRefGoogle Scholar
  17. 17.
    J.W. Chu, F.M. Wang, L. Yin, L. Lei, C.Y. Yan, F. Wang, Y. Wen, Z.X. Wang, C. Jiang, L.P. Feng, J. Xiong, Y.R. Li, J. He, Adv. Funct. Mater. 27, 1701342 (2017)CrossRefGoogle Scholar
  18. 18.
    X.L. Ye, H. Liu, N.T. Hu, J. Wang, M. Li, Y.F. Zhang, Mater. Lett. 150, 126 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Guo, P. Diao, S.M. Cai, J. Solid State Chem. 178, 1864 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 61, 3186 (2014)Google Scholar
  21. 21.
    B. Weng, M.Q. Yang, N. Zhang, Y.J. Xu, J. Mater. Chem. A 2, 9380 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, Y.H. Zhang, Y.J. Xu, Nanoscale 4, 5792 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, N. Zhang, Y.J. Xu, CrystEngComn 15, 3022 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Chen, W. Dai, Y.F. Lu, H.P. He, Q.Q. Lu, T. Jin, Z.Z. Ye, Mater. Res. Bull. 70, 190 (2015)CrossRefGoogle Scholar
  25. 25.
    G.K. Ramesha, S. Sampath, J. Phys. Chem. C 113, 7985 (2009)CrossRefGoogle Scholar
  26. 26.
    K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, Appl. Phys. A 106, 501 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    H.G. Fan, X.T. Zhao, J.H. Yang, X.N. Shan, L. L.Yang, Y.J. Zhang, X.Y. Li, M. Gao, Catal. Commun. 29, 29 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Wen. L. Yin, P. He, Z.X. Wang, X.K. Zhang, Q.S. Wang, T.A. Shifa, K. Xu, F.M. Wang, X.Y. Zhan, F. Wang, C. Jiang, J. He, Nano Lett. 16, 6437 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wen, Q.S. Wang, L. Yin. Q. Liu, F. Wang, F.M. Wang, Z.X. Wang, K.L. Liu, K. Xu, Y. Huang, T.A. Shifa, C. Jiang, J. Xiong, J. He, Adv. Mater. 28, 8051 (2016)CrossRefGoogle Scholar
  30. 30.
    J.L. Wang, H.H. Fang, X.D. Wang, X.S. Chen, W. Liu, W.D. Hu, Small 13, 1700894 (2017)CrossRefGoogle Scholar
  31. 31.
    R.Q. Cheng, Y. Wen, L. Yin, F.M. Wang, F. Wang, K.L. Liu, T.A. Shifa, J. Li, C. Jiang, Z.X. Wang, J. He, Adv. Mater. 29, 1703122 (2017)CrossRefGoogle Scholar
  32. 32.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012)CrossRefGoogle Scholar
  33. 33.
    K. Mahmood, S.B. Park, H.J. Sung, J. Mater. Chem. C 1, 3138 (2013)CrossRefGoogle Scholar
  34. 34.
    M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiaoqi Lu
    • 1
  • Xinhua Pan
    • 1
  • Weihao Wang
    • 1
  • Yusong Zhou
    • 1
  • Zhizhen Ye
    • 1
  1. 1.State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations