Advertisement

Applied Physics A

, 124:740 | Cite as

High-Q sensor for permittivity detection based on spiral resonator

  • Xue Wang
  • Hui Deng
  • Chen Liu
Article
  • 62 Downloads

Abstract

A high-quality factor microwave planar sensor with microfluidic channels for permittivity detection is proposed in this paper. The sensor is based on microstrip technology, and uses spiral subwavelength resonators to couple with the sample flowing in the microfluidic channel upon the sensor. Then the frequency shift and notch depth of the transmission response are related to the difference in complex permittivities between samples through a mathematic model, which will be used to extract the complex permittivities of samples afterwards. The sensor is designed with dual transmission lines to achieve better robustness and real-time measurement. After the simulation of samples in microfluidic channels, it turns out that the sensor is capable to distinguish samples whose permittivity has a difference of more than 2.56%. The quality factor of the sensor is 218 with empty load. It is validated to effectively distinguish mixture of water and air as well as water and ethanol with different fraction, which can be as low as 5%. The extracted permittivity is compared with theoretical value, which shows a good consistency.

References

  1. 1.
    F. Icier, T. Bavsal, Crit. Rev. Food Sci. Nutr. 44(6), 465–471 (2005)CrossRefGoogle Scholar
  2. 2.
    K.R. Foster, H.P. Schwan, Crit. Rev.Biomed.Eng. 17(1), 25–104 (1989)Google Scholar
  3. 3.
    S. Karuppuswami, E. Rothwell, P. Chahal, M. Havrilla, Sensors. 18 (2)(2018)CrossRefGoogle Scholar
  4. 4.
    S.P. Chakyar, K. Simon, C. Bindu, J. Appl. Phys. 121, 054101 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bogner, C. Steiner, S. Walter, J. Kita, G. Hagen, R. Moos, Sensors 17(10), 2422 (2017)CrossRefGoogle Scholar
  6. 6.
    M.S. Boybay, O.M. Ramahi, IEEE Trans. Instrum. Meas. 61(11), 3039–304 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Liu, F. Tong, I.E.E.E. Microw, Wireless Compon. Lett. 25(11), 751–753 (2015)CrossRefGoogle Scholar
  8. 8.
    H.E. Matbouly, N. Boubekeur, F. Domingue, IEEE Trans. Microw. Theory Techn. 63(12), 4150–4156 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A.A.M. Bahar, Z. Zakaria, A.A.M. Isa, E. Ruslan, R.A. Alahomi, Int. J. Appl.Eng. Res. 10(14), 34416–34419 (2015)Google Scholar
  10. 10.
    A. Bogner, C. Steiner, S. Walter et al., Sensors 17(10), 2422 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Ahmadiv, B. Gerislioglu, P. Manickam et al., ACS Sens 2(9), 1359–1368 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Gerislioglu, A. Ahmadiv, M. Karabivik et al., Adv. Electron. Mater. 3, 1700170 (2017)CrossRefGoogle Scholar
  13. 13.
    M.S. Boybay, O.M. Ramahi, IEEE Microw. Wirel. Compon. Lett. 23(4), 217–219 (2013)CrossRefGoogle Scholar
  14. 14.
    C.L. Yang, Microw. Symp. IEEE 2015, 1–3 (2015)Google Scholar
  15. 15.
    C. Lee, C.L. Yang, IEEE Trans. Microw. Theory Tech. 63(6), 2010–2023 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    C.M. Chen, J. Xu, Y. Yao, Sens. Actuator B Chem. 2017, 256 (2017)Google Scholar
  17. 17.
    R.A. Romero, R.S. Feitoza, C.R. Rambo, F.R. Sousa, in 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, (2015), pp. 434–439Google Scholar
  18. 18.
    Y. Huo, R. Bansal, Q. Zhu, IEEE Trans. Biomed. Eng. 51, 7 (2004)CrossRefGoogle Scholar
  19. 19.
    H. Wang, Y. He, M. Yang, Bio-Med. Mater. Eng. 24, 6 (2014)Google Scholar
  20. 20.
    J. Kim, A. Babajanyan, A. Hovsepyan, K. Lee, B. Friedman, Rev. Sci. Instrum. 79, 1–3 (2008)Google Scholar
  21. 21.
    M. Neshat, S. Gigoyan, D. Saeedkia, S. Safavi-Naeini, Electron. Lett. 44(17), 1020–1022 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Kawabata, Y. Kobayashi, Eur. Microw. Conf. 1, 1–4 (2005)Google Scholar
  23. 23.
    B. Kapilevich, B. Litvak, IEEE Sens. J. 11(10), 2611–2616 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K.B. Yu, S.G. Ogourtsov, IEEE Trans. Microw. Theory Techn. 48(11), 2159–2164 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    W. Withayachumnankul, D. Abbott, IEEE Photon. J. 1(2), 99–118 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    B. Gerislioglu, A. Ahmadiv, N. Pala, IEEE Photon. Technol. Lett. 29(24), 2226–2229 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    W. Mark, N.S. Knight, King et al., ACS Nano 8(1), 834–840 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Gerislioglu, A. Ahmadiv, N. Pala, Phys. Rev. B .97, 161405 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    A. Salim, S. Lim, Sensors. 16(11), 1–13 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Bilotti, A. Toscano, L. Vegni, IEEE Trans. 55, 2258–2267 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    F. Bilotti, A. Toscano, L. Vegni, IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Baena, R. Marqués, F. Medina, J. Martel, Phys. Rev. B 69, 014402 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    J.Z. Bao, M.L. Swicord, C.C. Davis, Chem. Phys. 104, 4441–4450 (1996)ADSGoogle Scholar
  34. 34.
    D. Mark, S. Haeberle, G. Roth, Chem. Soc. Rev. 39, 1153–1182 (2010)CrossRefGoogle Scholar
  35. 35.
    W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, D. Abbott, Sens. Actuators A Phys. 189, 233–237 (2013)CrossRefGoogle Scholar
  36. 36.
    T. Chretiennot, D. Dubuc, K. Grenier, IEEE Trans. Microw. Theory Techn. 61(2), 972–978 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, D. Abbott, IEEE Sensors J. 14(5), 1345–1351 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringBeihang UniversityBeijingChina
  2. 2.School of Sino-French EngineerBeihang UniversityBeijingChina

Personalised recommendations