Applied Physics A

, 124:744 | Cite as

Optical and microelectronic analysis of rhodamine B-based organic Schottky diode: a new trend application

  • G. F. Salem
  • E. A. A. El-Shazly
  • A. A. M. FaragEmail author
  • I. S. Yahia


The spin-coating technique was effectively used to prepare a good adherent and uniform thin films of rhodamine B (Rh.B). The investigation of the optical absorption revealed indirect energy gap of 2.1 eV and Urbach energy of 29 meV. The investigation of the electrical characteristics of the heterojunction-based Rh.B was achieved to extract the important parameters and identify the predominant conduction mechanism. Dark forward and reverse biasing current density–voltage characteristics showed notable rectification characteristics. The heterojunction conduction mechanism of Rh.B/p-Si confirms that observed mechanisms depend on the applied voltage range. The capacitance–voltage characteristics, measured at different signal frequencies, indicated the occurrence of an abrupt type of heterojunction. The frequency dependence of some heterojunction parameters like barrier height, maximum electric field, the width of the depletion region, and carrier concentration gives an indication for the type of interfacial layer of the heterojunction. A high dependence of the capacitance and conductance on both the biasing voltage and the applied frequency was observed. Moreover, the measured series resistance emphasizes the strong effect on the extracted parameters of the studied Schottky diode. Rh.B-based Schottky diode is a promising for multi-applications in an electronic device.



The authors express their appreciation to “The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University for funding this work under Grant number RCAMS/KKU/003-18. Moreover, the authors would like to thank Dr. Shiamaa Abdel Halim for providing the molecular calculations.


  1. 1.
    W. Hu, Organic optoelectronics (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, Weinheim, 2013)CrossRefGoogle Scholar
  2. 2.
    W. Brütting, C. Adachi, Physics of organic semiconductors (Wiley-VCH Verlag & Co. KGaA, Boschstr, Weinheim, 2012)CrossRefGoogle Scholar
  3. 3.
    S. Rao, N. Srinivas, D. Rao, L. Giribabu, B. Maiya, R. Philip et al., Opt. Commun. 182, 255–264 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    A. Gilman, A. Drachev, High Energy Chem. 40, 70–78 (2006)CrossRefGoogle Scholar
  5. 5.
    Z.V. Vardeny, A.J. Heeger, A. Dodabalapur, Synth. Met. 148, 1–3 (2005)CrossRefGoogle Scholar
  6. 6.
    M.M. Abutalib, M. Shkirb, I.S. Yahia, S. AlFaify, A.M. El-Naggar, V. Ganesh, Optik 127, 6601–6609 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Forrest, Nature 428, 911–918 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    H. Sirringhaus, Adv. Mater 17, 2411–2425 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, G. Yu, Y. Liu, Adv. Mater 22, 4427–4447 (2010)CrossRefGoogle Scholar
  10. 10.
    T.N. Ng, B. Russo, B. Krusor, R. Kist, A.C. Arias, Org. Electron. 12, 2012–2018 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Diao, B.C. Tee, G. Giri, J. Xu, D.H. Kim, H.A. Becerril, R.M. Stoltenberg, T.H. Lee, G. Xue, S.C. Mannsfeld, Nat. Mater. 12, 665–671 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kazemifard, L. Naji, F. Afshar Taromi, J. Coll. Interf. Sci. 515, 139–151 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310–4317 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.A.M. Farag, I.S. Yahia, Synth. Met. 161, 32–39 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184–4195 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974)CrossRefGoogle Scholar
  17. 17.
    A. Alaa, S.A. Akl, Mahmoud, Optik 172, 783–793 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    W.G. Osiris, A.A.M. Farag, I.S. Yahia, Synth. Met. 161, 1079–1087 (2011)CrossRefGoogle Scholar
  19. 19.
    A.A.M. Farag, I.S. Yahia, T. Wojtowicz, G. Karczewski, J. Phys. D Appl. Phys. 43, 215102 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C. Thanachayanont, K. Import, S. Sahasithiwat, J. Korean Phys. Soc. 52, 1540–1544 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M.E. Aydin, A.A.M. Farag, M. Abdel-Rafea, A.H. Ammar, F. Yakuphanoglu, Synth. Met. 161, 2700–2707 (2012)CrossRefGoogle Scholar
  22. 22.
    A.A.M. Farag, W.G. Osiris, A.H. Ammar, Appl. Surf. Sci. 259, 600–609 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A.A.M. Farag, M.S. Sawsan, M.E. Haggag, Mahmoud, Spectrochimica Acta Part A 93, 116–124 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G. Ersöz, İ Yücedağ, S. Bayrakdar, Ş Altındal, A. Gümüş, J. Mater. Sci. 28, 6413–6420 (2017)Google Scholar
  25. 25.
    F. Yakuphanoglu, M. Kandaz, B. Filiz Senkal, Sensors Actuators 153, 191 (2009)CrossRefGoogle Scholar
  26. 26.
    N. Oyama, S. Kaneko, K. Momiyama, K. Kanomata, F. Hirose, Microelectron. Eng 104, 130–134 (2013)CrossRefGoogle Scholar
  27. 27.
    D.S. Reddy, M.B. Reddy, N.N.K. Reddy, V.R. Reddy, J. Mod. Phys. 2, 113–123 (2011)CrossRefGoogle Scholar
  28. 28.
    W. Khan, S. Kim, Mater. Sci. Semicond. Proc. 66: 232–240 (2017)CrossRefGoogle Scholar
  29. 29.
    N.M. Khusayfan, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Alloys Compd. 663, 796–807 (2016)CrossRefGoogle Scholar
  30. 30.
    A.R. Deniz, Z. Çaldıran, M. Biber, Ü. İncekara, Ş. Aydoğan, J. Alloys Compd. 763, 622–628 (2018)CrossRefGoogle Scholar
  31. 31.
    T. Kiuru, A.V. Räisänen, IEEE Trans. Microw. Theory Techn. 59, 2108–2116 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S.H. Phark, H. Kim, K.M. Song, D.-W. Kim, J. Korean Phys. Soc. 58, 1356–1360 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    F. Yakuphanoglu, W.A. Shah, M. Farooq, Acta Phys. Pol. 120, 558–562 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Xu, Z. Jia, N. Zhang, T. Ren, J. Appl. Phys. 111, 074101 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    G. Ersöz, İ Yücedağ, S. Bayrakdar, Ş. Altındal, A. Gümüş, J. Mater. Sci. Electron. 28, 6413–6420 (2017)CrossRefGoogle Scholar
  37. 37.
    S.M.S. Haggag, A.A.M.Farag, M. Abdelrafea, Spectrochim. Acta A 110, 14–19 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, Appl. Phys. Lett. 90, 022907 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    B.T. Phan, C. Jung, T. Choi, J. Lee, J. Korean Phys. Soc 51, 664–668 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Taukeer Khan, V. Agrawal, A. Almohammedi, V. Gupta, Solid-State Electron. 145, 49–53 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    M. Abkowitz, J.S. Facci, J. Rehm, J. Appl. Phys. 83, 2670–2676 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216–220 (1965)ADSCrossRefGoogle Scholar
  43. 43.
    M. Soylu, A.A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, Microelectron. Eng. 154, 26–37 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Zeyrek, E. Acaroglu, S. Altındal, S. Birdogan, M.M. Bülbül, Curr. Appl. Phys. 13, 1225–1230 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M.M. Bülbül, S. Zeyrek, Microelectron. Eng 83, 2522–2526 (2006)CrossRefGoogle Scholar
  46. 46.
    S.M. Sze, Physics of Semiconductor Devices, Second edn. (Wiley, New York, 1981)Google Scholar
  47. 47.
    A.M. Goodman, J. Appl. Phys. 34, 329–338 (1963)ADSCrossRefGoogle Scholar
  48. 48.
    J.J. Low, M.L. Kreider, D.P. Pulsifer Andrew, S. Jones, T.H. Gilani, Am. Undergraduate Res. 7, 27–32 (2008)Google Scholar
  49. 49.
    S.J. Fonash, J. Appl. Phys. 54, 1966–1975 (1983)ADSCrossRefGoogle Scholar
  50. 50.
    S. Aydogan, M. Saglam, A. Turut, Polymer 46, 563–568 (2005)CrossRefGoogle Scholar
  51. 51.
    A. Tataroglu, S. Altindal, Microelectron. Eng. 83, 582–588 (2006)CrossRefGoogle Scholar
  52. 52.
    A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 2256–2260 (2008)CrossRefGoogle Scholar
  53. 53.
    J. Liang, T. Miyazaki, M. Morimoto, S. Nishida, N. Shigekawa, J. Appl. Phys 114, 183703 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    A.G. Jadhav, L. Rhyman, I.A. Alswaidan, P. Ramasami, N. Sekar, Comp. Theor. Chem. 1131, 1–12 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. F. Salem
    • 1
  • E. A. A. El-Shazly
    • 1
  • A. A. M. Farag
    • 1
    • 2
    Email author
  • I. S. Yahia
    • 3
    • 4
    • 5
  1. 1.Thin Film and Solar Cells Laboratory, Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Physics Department, Faculty of Sciences and ArtsJouf UniversityJoufSaudi Arabia
  3. 3.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  4. 4.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab., Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations