Advertisement

Applied Physics A

, 124:738 | Cite as

Refluxed sol–gel synthesized ZnO nanopowder with variable zinc precursor concentrations

  • Endris Taju Seid
  • Francis B. Dejene
  • Zelalem N. Urgessa
  • Johannes R. Botha
Article
  • 55 Downloads

Abstract

ZnO nanoparticles were synthesized using refluxed sol–gel method with variable zinc precursor concentration ranging from 0.1 to 0.2 M. The structural, morphology and optical properties of ZnO nanostructures were investigated using different characterization techniques. Concentration of zinc precursor significantly affects the morphology, structural and optical properties. All ZnO samples prepared are pure hexagonal wurtzite in structure and the crystallite sizes increases from 24 to 35 nm. The average lattice parameters were calculated as a = 0.3267 nm and c = 0.5232 nm. The average bond length of ZnO nanocrystalline was calculated to be around 0.1988 nm. The photoluminescence measurement result shows that both UV (at 380 nm) and visible (between 428 and 636 nm centered at 540 nm) emissions are displayed with the excitation wavelength of 248.6 nm from NeCu laser source. The room temperature photoluminescence measurement shows that the emission wavelength shifted towards the higher wavelength as zinc precursor concentration increases. The intensity ratio of the near-band-edge emission to deep-level emission increases as zinc precursor concentration increases. With low temperature photoluminescence (from 84 to 300 K) measurement, the emission energy increases from 3.28 to 3.35 eV. The deep-level emission of the ZnO was displayed in the green and yellow regions of the visible spectrum. The reflectance spectra from UV–Vis spectroscopy show that the concentration of zinc precursor has a significant effect on the band gaps of the material which decreased from 3.26 to 3.24 eV as the zinc precursor concentration increased from 0.1 to 0.2 M.

Notes

Acknowledgements

The authors would like to acknowledge the Directorate of research of the Free State University for the funding of this research.

References

  1. 1.
    K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Matsubara, R. Hunger, S. Niki, Appl. Phys. Lett. 79, 4139–4141 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Ü Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    F. Aslan, A. Tumbul, A. Göktaş, R. Budakoğlu, İH. Mutlu, J. Sol–Gel. Sci. Technol. 80, 389–395 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar, M.S. Akhtar, J. Mater. Sci. 52, 4743–4795 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Solar Energy Mater. Solar Cells 92, 1639–1645 (2008)CrossRefGoogle Scholar
  6. 6.
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloy. Compd. 499, 231–237 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Vittal, K. Ho, Renew. Sustain. Energy Rev. 70, 920–935 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.T. Yin, W.X. Que, C.H. Kam, J. Sol-Gel. Sci. Technol. 53, 605–612 (2010)CrossRefGoogle Scholar
  10. 10.
    F.B. Dejene, A.G. Ali, H.C. Swart, R.J. Botha, K. Roro, L. Coetsee, M.M. Biggs, Cent. Eur. J. Phys. 9(5), 1321–1326 (2011)Google Scholar
  11. 11.
    K. Agnieszka, J. Teofil, Materials, 7, 2833–2881 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, M. Muhammed, J. Phys. Chem. B 101, 2598–2601 (1997)CrossRefGoogle Scholar
  13. 13.
    W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15, 383–396 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    J. Ungula, B.F. Dejene, H.C. Swart, Phys. B 535, 251–257 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    M. Søndergaard, E.D. Bøjesen, M. Christensen, B.B. Iversen, Cryst. Growth Des. 11(9), 4027–4033 (2011)CrossRefGoogle Scholar
  17. 17.
    S.S. Alias, A.A. Mohamad, Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells. Springer Briefs in Materials. Springer, New York (2014)Google Scholar
  18. 18.
    J. Kaur, P. Kumar, T.S. Sathiaraj, R. Thangaraj, Int. Nano Lett. 3, 4 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  21. 21.
    K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Nanoscale Res. Lett. 9, 429 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Ungula, B.F. Dejene, Phys. B 480, 26–30 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    L.T. Jule., F.B. Dejene, K.T. Roro, Z.N. Urgessa, J.R. Botha, Phys. B 497, 71–77 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Kim, K.G. Yim, S. Kim, G. Nam, D.-Y. Lee, J.S. Kim, J.-Y. Leem, J. Korean Phys. Soc. 59(3), 2354–2361 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Z.N. Urgessa, O.S. Oluwafemi, J.K. Dangbegnon, J.R. Botha, Phys. B 407, 1546–1549 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    P.A. Rodnyi, I.V. Khodyuk, Opt. Spectros. 111, 776 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    V. Koutu, L. Shastri, M.M. Malik, Mater. Sci. Pol. 34(4), 819–827 (2016)CrossRefGoogle Scholar
  29. 29.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    M.D. McCluskey, S.J. Jokela, J. Appl. Phys. 106, 071101 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Z.N. Urgessa, J.R. Botha, M.O. Eriksson, C.M. Mbulanga, S.R. Dobson, S.R. Tankio Djiokap, K.F. Karlsson, V. Khranovskyy, R. Yakimova, P.-O. Holtz, J. Appl. Phys. 116, 123506 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    L. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    V. Khranovskyy, R. Yakimova, F. Karlsson, A.S. Syed, P. Holtz, Z.N. Urgessa, O.S. Oluwafemi, J.R. Botha, Phys. B Condens. Matter 407(10), 1538–1542 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A.B.M.A. Ashrafi, N.T. Binh, B.P. Zhang, Y. Segawa, J. Appl. Phys. 95, 7738 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    H. Wang, J. Xie, K. Yan, M. Duan, J. Mater. Sci. Technol. 27(2), 153–158 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13(10), 1633–1645 (2013)CrossRefGoogle Scholar
  38. 38.
    A.H. Moharram, S.A. Mansour, M.A. Hussein, M. Rashad, J. Nanomater. (2014) 20Google Scholar
  39. 39.
    Y. Leprince-Wang, A. Yacoubi-Ouslim, G.Y. Wang, Microelectron. J. 36, 625–628 (2005)CrossRefGoogle Scholar
  40. 40.
    K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Results Phys. 7, 1190–1197 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik, 125 (2014) 2560–2564Google Scholar
  42. 42.
    Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127, 10102–10107 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    K.W. Guo, J. Appl. Biotechnol. Bioeng. 2(5), 197–202 (2017)Google Scholar
  44. 44.
    M. Kashif, Y. Al-Douri, U. Hashim, M.E. Ali, S.M.U. Ali, M. Willander, Micro Nano Lett. 7(2) (2012) 163–167CrossRefGoogle Scholar
  45. 45.
    S. Khan, S.Q. Hussain, D. Hwang, S. Velumani, H. Lee, Mater. Sci. Semicond. Process. 37, 51–56 (2015)CrossRefGoogle Scholar
  46. 46.
    R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Endris Taju Seid
    • 1
  • Francis B. Dejene
    • 1
  • Zelalem N. Urgessa
    • 2
  • Johannes R. Botha
    • 2
  1. 1.Department of PhysicsUniversity of the Free State (Qwaqwa Campus)PhuthaditjhabaSouth Africa
  2. 2.Department of PhysicsNelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations