Advertisement

Applied Physics A

, 125:7 | Cite as

Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8)

  • Khalil J. Hamam
  • Gellert Mezei
  • Ziad Khattari
  • Mufeed Maghrabi
  • Feras Afaneh
  • Wisam A. Al Isawi
  • Fathy Salman
Article
  • 50 Downloads

Abstract

The AC conductivity of nickel phthalocyanine octacarboxylic acid was investigated from 100 Hz to 1 MHz and temperature from 290 to 423 K. The AC conductivity was found to vary with frequency (σ(f)) and form two dispersion regions; the associated exponent factor “s” values were found to vary from 1.17 to 1.34 and from 0.42 to 0.67 (< 1). The value and temperature dependent of s are found in agreement with conduction mechanism models of large-polaron tunneling and the correlated barrier hopping, at the first and the second regions, respectively. The real and the imaginary parts of the dielectric constant were observed to decrease as the frequency increases indicating the pronounce contribution of low-frequency polarization mechanisms. Furthermore, the activation free energy ∆F, enthalpy ∆H, and entropy ∆S of the sample were calculated as well.

Notes

Acknowledgements

Gellert Mezei would like to acknowledge the donors of the American Chemical Society Petroleum Research Fund (ACS PRF) for their generous support of this research under Grant number 52907-ND10.

Supplementary material

339_2018_2147_MOESM1_ESM.xlsx (7.3 mb)
Supplementary material 1 (XLSX 7459 KB)

References

  1. 1.
    M. Raïssi, S. Leroy-Lhez, B. Ratier, Enhanced photocurrent and stability of organic solar cells using solution-based TS-CuPc interfacial layer. Org. Electron. Phys. Mater. Appl. 37, 183–189 (2016).  https://doi.org/10.1016/j.orgel.2016.06.030 CrossRefGoogle Scholar
  2. 2.
    M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, N.M. Hamdan, C.A. Burns, A new method to improve the lifetime stability of small molecule bilayer heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells. 109, 270–274 (2013).  https://doi.org/10.1016/j.solmat.2012.11.006 CrossRefGoogle Scholar
  3. 3.
    M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, C.A. Burns, Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions. Sol. Energy Mater. Sol. Cells. 121, 152–156 (2014).  https://doi.org/10.1016/j.solmat.2013.11.006 CrossRefGoogle Scholar
  4. 4.
    C.L. Wu, Y. Chen, Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes. Opt. Mater. (Amst). 69, 38–48 (2017).  https://doi.org/10.1016/j.optmat.2017.04.004 ADSCrossRefGoogle Scholar
  5. 5.
    Y. Chen, Q. Wang, J. Chen, D. Ma, D. Yan, L. Wang, Organic semiconductor heterojunction as charge generation layer in tandem organic light-emitting diodes for high power efficiency. Org. Electron. Phys. Mater. Appl. 13, 1121–1128 (2012).  https://doi.org/10.1016/j.orgel.2012.03.013 CrossRefGoogle Scholar
  6. 6.
    H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, C. Kloc, Fluorination of metal phthalocyanines: single-crystal growth, efficient N-channel organic field-effect transistors, and structure-property relationships, Sci. Rep. 4 (2014).  https://doi.org/10.1038/srep07573
  7. 7.
    M.E. Roberts, A.N. Sokolov, Z. Bao, Material and device considerations for organic thin-film transistor sensors. J. Mater. Chem. 19, 3351–3363 (2009).  https://doi.org/10.1039/b816386c CrossRefGoogle Scholar
  8. 8.
    O.A. Melville, B.H. Lessard, T.P. Bender, Phthalocyanine-based organic thin-film transistors: a review of recent advances. ACS Appl. Mater. Interfaces. 7, 13105–13118 (2015).  https://doi.org/10.1021/acsami.5b01718 CrossRefGoogle Scholar
  9. 9.
    E.S. Muckley, C.B. Jacobs, K. Vidal, N.V. Lavrik, B.G. Sumpter, I.N. Ivanov, Multi-mode humidity sensing with water-soluble copper phthalocyanine for increased sensitivity and dynamic range, Sci. Rep. 7 (2017).  https://doi.org/10.1038/s41598-017-10401-2
  10. 10.
    J.C. Bommer, J.D. Spikes, Phthalocyanines: properties and applications. Photochem. Photobiol. 53, 419–419 (1991).  https://doi.org/10.1111/j.1751-1097.1991.tb03651.x CrossRefGoogle Scholar
  11. 11.
    J. Nackiewicz, A. Suchan, M. Kliber, Octacarboxyphthalocyanines—compounds of interesting spectral, photochemical and catalytic properties. Chemik. 68, 373–376 (2014)Google Scholar
  12. 12.
    A.M. Saleh, S.M. Hraibat, R.-L. Kitaneh, M.M. Abu-Samreh, S.M. Musameh, Dielectric response and electric properties of organic semiconducting phthalocyanine thin films. J. Semicond. 33, 082002 (2012).  https://doi.org/10.1088/1674-4926/33/8/082002 ADSCrossRefGoogle Scholar
  13. 13.
    R.M.L. Kitaneh, A.M. Saleh, R.D. Gould, Ac electrical parameters of Al-ZnPc-Al organic semiconducting films. Cent. Eur. J. Phys. 4, 87–104 (2006).  https://doi.org/10.1007/s11534-005-0008-4 CrossRefGoogle Scholar
  14. 14.
    S.M. Hraibat, R.M.L. Kitaneh, M.M. Abu- Samreh, A.M. Saleh, AC-electronic and dielectric properties of semiconducting phthalocyanine compounds: a comparative study, J. Semicond. 34 (2013).  https://doi.org/10.1088/1674-4926/34/11/112001
  15. 15.
    M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl2). Phys. B Condens. Matter. 403, 2331–2337 (2008).  https://doi.org/10.1016/j.physb.2007.12.015 ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Atta, AC conductivity and dielectric measurements of bulk magnesium phthalocyanine (MgPc). J. Alloys Compd. 480, 564–567 (2009).  https://doi.org/10.1016/j.jallcom.2009.01.124 CrossRefGoogle Scholar
  17. 17.
    I.M. Soliman, M.M. El-Nahass, Y. Mansour, Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl). Solid State Commun. 225, 17–21 (2016).  https://doi.org/10.1016/j.ssc.2015.10.011 ADSCrossRefGoogle Scholar
  18. 18.
    G. Mezei, A.R. Venter, J.W. Kreft, A.A. Urech, N.R. Mouch, Monomeric, not tetrameric species are responsible for the colossal dielectric constant of copper phthalocyanine derived from pyromellitic dianhydride. RSC Adv. 2, 10466–10469 (2012).  https://doi.org/10.1039/c2ra21634e CrossRefGoogle Scholar
  19. 19.
    K.J. Hamam, M.M. Al-Amar, G. Mezei, R. Guda, C. Burns, High dielectric constant response of modified copper phthalocyanine. J. Mol. Liq. 199, 324–329 (2014).  https://doi.org/10.1016/j.molliq.2014.09.029 CrossRefGoogle Scholar
  20. 20.
    V.S.P.K. Neti, J. Wang, S. Deng, L. Echegoyen, High and selective CO2 adsorption by a phthalocyanine nanoporous polymer, J. Mater. Chem. A. 3 (2015) 10284–10288.  https://doi.org/10.1039/c5ta00587f.CrossRefGoogle Scholar
  21. 21.
    M.H. Salehi, A.R. Karimi, Novel octa-substituted metal (II) phthalocyanines bearing 2,6-di- tert -buthylphenol groups: synthesis, characterization, electronic properties, aggregation behavior and their antioxidant activities as stabilizer for polypropylene and high density polyeth. Polym. Degrad. Stab. (2018).  https://doi.org/10.1016/j.polymdegradstab.2018.03.005 CrossRefGoogle Scholar
  22. 22.
    R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J. Mol. Struct. 753, 119–126 (2005).  https://doi.org/10.1016/j.molstruc.2005.06.003 ADSCrossRefGoogle Scholar
  23. 23.
    K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008).  https://doi.org/10.1016/j.jallcom.2006.11.081 CrossRefGoogle Scholar
  24. 24.
    A. Kumar, N.M. Murari, R.S. Katiyar, Investigation of dielectric and electrical behavior in Pb(Fe0.66W0.33)0.50Ti0.50O3thin films by impedance spectroscopy. J. Alloys Compd. 469, 433–440 (2009).  https://doi.org/10.1016/j.jallcom.2008.01.130 CrossRefGoogle Scholar
  25. 25.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), Applications of Impedance Spectroscopy, pp. 232–258.  https://doi.org/10.1002/0471716243 CrossRefGoogle Scholar
  26. 26.
    F. Salman, R. Khalil, H. Hazaa, Impedance measurements of some silver ferro-phosphate glasses. Adv. Mater. Lett. 7, 593–598 (2016).  https://doi.org/10.5185/amlett.2016.6175 CrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32 (1999).  https://doi.org/10.1088/0022-3727/32/14/201
  28. 28.
    K.C. Kao, Dielectric phenomena in solids (Elsevier, London, 2004), Electrical Conduction and Photoconduction, p. 381.  https://doi.org/10.1016/B978-0-12-396561-5.X5010-5 CrossRefGoogle Scholar
  29. 29.
    K. Funke, Jump relaxation in solid ionic conductors, Solid State Ionics. 28–30 (1988) 100–107.  https://doi.org/10.1016/S0167-2738(88)80015-8
  30. 30.
    K. Funke, Jump relaxation model and coupling model—a comparison, J. Non. Cryst. Solids. 172–174 (1994) 1215–1221.  https://doi.org/10.1016/0022-3093(94)90646-7
  31. 31.
    V. Bobnar, A. Levstik, C. Huang, Q.M. Zhang, Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine, Phys. Rev. B Condens. Matter Mater. Phys. 71 (2005).  https://doi.org/10.1103/PhysRevB.71.041202
  32. 32.
    M. Gou, X. Yan, Y. Kwon, T. Hayakawa, M.A. Kakimoto, T. Goodson, High frequency dielectric response in a branched phthalocyanine. J. Am. Chem. Soc. 128, 14820–14821 (2006).  https://doi.org/10.1021/ja063796w CrossRefGoogle Scholar
  33. 33.
    Y.A. Vidadi, L.D. Rozenshtein, E.A. Christyakov, Hopping and band conductivities in organic semiconductors. Sov. Phys. Solid State 11, 173–175 (1969)Google Scholar
  34. 34.
    M.M. EL-Nahass, A.F. EL-Deeb, F. Abd-El-Salam, Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine. Org. Electron. Phys. Mater. Appl. 7, 261–270 (2006).  https://doi.org/10.1016/j.orgel.2006.03.007 CrossRefGoogle Scholar
  35. 35.
    S.K. Arya, S.S. Danewalia, K. Singh, Frequency independent low-: K lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J. Mater. Chem. C. 4, 3328–3336 (2016).  https://doi.org/10.1039/c5tc03364k CrossRefGoogle Scholar
  36. 36.
    T.G.A. Malik, M.E. Kassεµb, N.S. Alyc, S.M. Kηalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A. 81, 675–680 (1992).  https://doi.org/10.12693/APhysPolA.81.675 CrossRefGoogle Scholar
  37. 37.
    S.A. James, A.K. Ray, J. Silver, Dielectric and optical studies of sublimed MoOPc films. Phys. Status Solidi. 129, 435–441 (1992).  https://doi.org/10.1002/pssa.2211290213 ADSCrossRefGoogle Scholar
  38. 38.
    S. Murugavel, M. Upadhyay, A.C. conduction in amorphous semiconductors. J. Indian Inst. Sci. 91, 303–317 (2011).  https://doi.org/10.1080/00018738700101971 CrossRefGoogle Scholar
  39. 39.
    A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982).  https://doi.org/10.1080/00018738200101418 ADSCrossRefGoogle Scholar
  40. 40.
    M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753 (1961).  https://doi.org/10.1103/PhysRev.122.1742 ADSCrossRefGoogle Scholar
  41. 41.
    I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001).  https://doi.org/10.1080/00018730110103249 ADSCrossRefGoogle Scholar
  42. 42.
    A.R. Long, N. Balkan, W.R. Hogg, R.P. Ferrier, A.C. loss in sputtered hydrogenated amorphous germanium measurements at around liquid-nitrogen temperatures. Philos. Mag. B. 45, 497–518 (1982).  https://doi.org/10.1080/13642818208246415 ADSCrossRefGoogle Scholar
  43. 43.
    M.M. Abdel-Kader, M.A.F. Basha, G.H. Ramzy, A.I. Aboud, Thermal and ac electrical properties of N-methylanthranilic acid below room temperature. J. Phys. Chem. Solids 117, 13–20 (2018).  https://doi.org/10.1016/j.jpcs.2018.02.007 ADSCrossRefGoogle Scholar
  44. 44.
    D.P. Almond, G.K. Duncan, A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics. 8, 159–164 (1983).  https://doi.org/10.1016/0167-2738(83)90079-6 CrossRefGoogle Scholar
  45. 45.
    M.D. Earle, Electrons and holes in semiconductors. J. Franklin Inst. 252, 95 (1951).  https://doi.org/10.1016/0016-0032(51)91102-7 CrossRefGoogle Scholar
  46. 46.
    R.G. Chambers, The free-electron model, in Electronics in Metals and Semiconductors. Physics and its Application, 1st edn. (Springer, New Delhi, 1990).  https://doi.org/10.1007/978-94-009-0423-1_1 CrossRefGoogle Scholar
  47. 47.
    B. Köksoy, M. Aygün, A. Çapkin, F. Dumludağ, M. Bulut, Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties. J. Porphyr. Phthalocyanines. (2018).  https://doi.org/10.1142/S1088424618500153 CrossRefGoogle Scholar
  48. 48.
    E. Yabaş, M. Sülü, F. Dumludag, A.R. Özkaya, B. Salih, Ö Bekaroglu, Electrical and electrochemical properties of double-decker Lu(III) and Eu(III) phthalocyanines with four imidazoles and N-alkylated imidazoles. Polyhedron. 42, 195–205 (2012).  https://doi.org/10.1016/j.poly.2012.05.020 CrossRefGoogle Scholar
  49. 49.
    P.B. Macedo, C.T. Moynihan, R. Bose, Role of Ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glas. 13, 171–179 (1972).  https://doi.org/10.4236/ns.2014.66038 CrossRefGoogle Scholar
  50. 50.
    S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of I Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st edn. (McGraw-Hill, New York, 1941), pp. 13–15,  https://doi.org/10.1038/149509a0 (introduction)CrossRefGoogle Scholar
  51. 51.
    H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).  https://doi.org/10.1063/1.1749836 ADSCrossRefGoogle Scholar
  52. 52.
    K.K. Srivastava, A. Kumar, O.S. Panwar, K.N. Lakshminarayan, Dielectric relaxation study of chalcogenide glasses. J. Non. Cryst. Solids. 33, 205–224 (1979).  https://doi.org/10.1016/0022-3093(79)90050-4 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Physics DepartmentTafila Technical UniversityTafilaJordan
  2. 2.Chemistry DepartmentWestern Michigan UniversityKalamazooUSA
  3. 3.Physics DepartmentHashemite UniversityZarqaJordan
  4. 4.Physics DepartmentUniversity of BanhaBanhaEgypt

Personalised recommendations