Applied Physics A

, 125:7 | Cite as

Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8)

  • Khalil J. HamamEmail author
  • Gellert Mezei
  • Ziad Khattari
  • Mufeed Maghrabi
  • Feras Afaneh
  • Wisam A. Al Isawi
  • Fathy Salman


The AC conductivity of nickel phthalocyanine octacarboxylic acid was investigated from 100 Hz to 1 MHz and temperature from 290 to 423 K. The AC conductivity was found to vary with frequency (σ(f)) and form two dispersion regions; the associated exponent factor “s” values were found to vary from 1.17 to 1.34 and from 0.42 to 0.67 (< 1). The value and temperature dependent of s are found in agreement with conduction mechanism models of large-polaron tunneling and the correlated barrier hopping, at the first and the second regions, respectively. The real and the imaginary parts of the dielectric constant were observed to decrease as the frequency increases indicating the pronounce contribution of low-frequency polarization mechanisms. Furthermore, the activation free energy ∆F, enthalpy ∆H, and entropy ∆S of the sample were calculated as well.



Gellert Mezei would like to acknowledge the donors of the American Chemical Society Petroleum Research Fund (ACS PRF) for their generous support of this research under Grant number 52907-ND10.

Supplementary material

339_2018_2147_MOESM1_ESM.xlsx (7.3 mb)
Supplementary material 1 (XLSX 7459 KB)


  1. 1.
    M. Raïssi, S. Leroy-Lhez, B. Ratier, Enhanced photocurrent and stability of organic solar cells using solution-based TS-CuPc interfacial layer. Org. Electron. Phys. Mater. Appl. 37, 183–189 (2016). CrossRefGoogle Scholar
  2. 2.
    M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, N.M. Hamdan, C.A. Burns, A new method to improve the lifetime stability of small molecule bilayer heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells. 109, 270–274 (2013). CrossRefGoogle Scholar
  3. 3.
    M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, C.A. Burns, Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions. Sol. Energy Mater. Sol. Cells. 121, 152–156 (2014). CrossRefGoogle Scholar
  4. 4.
    C.L. Wu, Y. Chen, Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes. Opt. Mater. (Amst). 69, 38–48 (2017). CrossRefADSGoogle Scholar
  5. 5.
    Y. Chen, Q. Wang, J. Chen, D. Ma, D. Yan, L. Wang, Organic semiconductor heterojunction as charge generation layer in tandem organic light-emitting diodes for high power efficiency. Org. Electron. Phys. Mater. Appl. 13, 1121–1128 (2012). CrossRefGoogle Scholar
  6. 6.
    H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, C. Kloc, Fluorination of metal phthalocyanines: single-crystal growth, efficient N-channel organic field-effect transistors, and structure-property relationships, Sci. Rep. 4 (2014).
  7. 7.
    M.E. Roberts, A.N. Sokolov, Z. Bao, Material and device considerations for organic thin-film transistor sensors. J. Mater. Chem. 19, 3351–3363 (2009). CrossRefGoogle Scholar
  8. 8.
    O.A. Melville, B.H. Lessard, T.P. Bender, Phthalocyanine-based organic thin-film transistors: a review of recent advances. ACS Appl. Mater. Interfaces. 7, 13105–13118 (2015). CrossRefGoogle Scholar
  9. 9.
    E.S. Muckley, C.B. Jacobs, K. Vidal, N.V. Lavrik, B.G. Sumpter, I.N. Ivanov, Multi-mode humidity sensing with water-soluble copper phthalocyanine for increased sensitivity and dynamic range, Sci. Rep. 7 (2017).
  10. 10.
    J.C. Bommer, J.D. Spikes, Phthalocyanines: properties and applications. Photochem. Photobiol. 53, 419–419 (1991). CrossRefGoogle Scholar
  11. 11.
    J. Nackiewicz, A. Suchan, M. Kliber, Octacarboxyphthalocyanines—compounds of interesting spectral, photochemical and catalytic properties. Chemik. 68, 373–376 (2014)Google Scholar
  12. 12.
    A.M. Saleh, S.M. Hraibat, R.-L. Kitaneh, M.M. Abu-Samreh, S.M. Musameh, Dielectric response and electric properties of organic semiconducting phthalocyanine thin films. J. Semicond. 33, 082002 (2012). CrossRefADSGoogle Scholar
  13. 13.
    R.M.L. Kitaneh, A.M. Saleh, R.D. Gould, Ac electrical parameters of Al-ZnPc-Al organic semiconducting films. Cent. Eur. J. Phys. 4, 87–104 (2006). CrossRefGoogle Scholar
  14. 14.
    S.M. Hraibat, R.M.L. Kitaneh, M.M. Abu- Samreh, A.M. Saleh, AC-electronic and dielectric properties of semiconducting phthalocyanine compounds: a comparative study, J. Semicond. 34 (2013).
  15. 15.
    M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl2). Phys. B Condens. Matter. 403, 2331–2337 (2008). CrossRefADSGoogle Scholar
  16. 16.
    A.A. Atta, AC conductivity and dielectric measurements of bulk magnesium phthalocyanine (MgPc). J. Alloys Compd. 480, 564–567 (2009). CrossRefGoogle Scholar
  17. 17.
    I.M. Soliman, M.M. El-Nahass, Y. Mansour, Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl). Solid State Commun. 225, 17–21 (2016). CrossRefADSGoogle Scholar
  18. 18.
    G. Mezei, A.R. Venter, J.W. Kreft, A.A. Urech, N.R. Mouch, Monomeric, not tetrameric species are responsible for the colossal dielectric constant of copper phthalocyanine derived from pyromellitic dianhydride. RSC Adv. 2, 10466–10469 (2012). CrossRefGoogle Scholar
  19. 19.
    K.J. Hamam, M.M. Al-Amar, G. Mezei, R. Guda, C. Burns, High dielectric constant response of modified copper phthalocyanine. J. Mol. Liq. 199, 324–329 (2014). CrossRefGoogle Scholar
  20. 20.
    V.S.P.K. Neti, J. Wang, S. Deng, L. Echegoyen, High and selective CO2 adsorption by a phthalocyanine nanoporous polymer, J. Mater. Chem. A. 3 (2015) 10284–10288. Scholar
  21. 21.
    M.H. Salehi, A.R. Karimi, Novel octa-substituted metal (II) phthalocyanines bearing 2,6-di- tert -buthylphenol groups: synthesis, characterization, electronic properties, aggregation behavior and their antioxidant activities as stabilizer for polypropylene and high density polyeth. Polym. Degrad. Stab. (2018). CrossRefGoogle Scholar
  22. 22.
    R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J. Mol. Struct. 753, 119–126 (2005). CrossRefADSGoogle Scholar
  23. 23.
    K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). CrossRefGoogle Scholar
  24. 24.
    A. Kumar, N.M. Murari, R.S. Katiyar, Investigation of dielectric and electrical behavior in Pb(Fe0.66W0.33)0.50Ti0.50O3thin films by impedance spectroscopy. J. Alloys Compd. 469, 433–440 (2009). CrossRefGoogle Scholar
  25. 25.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), Applications of Impedance Spectroscopy, pp. 232–258. CrossRefGoogle Scholar
  26. 26.
    F. Salman, R. Khalil, H. Hazaa, Impedance measurements of some silver ferro-phosphate glasses. Adv. Mater. Lett. 7, 593–598 (2016). CrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32 (1999).
  28. 28.
    K.C. Kao, Dielectric phenomena in solids (Elsevier, London, 2004), Electrical Conduction and Photoconduction, p. 381. CrossRefGoogle Scholar
  29. 29.
    K. Funke, Jump relaxation in solid ionic conductors, Solid State Ionics. 28–30 (1988) 100–107.
  30. 30.
    K. Funke, Jump relaxation model and coupling model—a comparison, J. Non. Cryst. Solids. 172–174 (1994) 1215–1221.
  31. 31.
    V. Bobnar, A. Levstik, C. Huang, Q.M. Zhang, Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine, Phys. Rev. B Condens. Matter Mater. Phys. 71 (2005).
  32. 32.
    M. Gou, X. Yan, Y. Kwon, T. Hayakawa, M.A. Kakimoto, T. Goodson, High frequency dielectric response in a branched phthalocyanine. J. Am. Chem. Soc. 128, 14820–14821 (2006). CrossRefGoogle Scholar
  33. 33.
    Y.A. Vidadi, L.D. Rozenshtein, E.A. Christyakov, Hopping and band conductivities in organic semiconductors. Sov. Phys. Solid State 11, 173–175 (1969)Google Scholar
  34. 34.
    M.M. EL-Nahass, A.F. EL-Deeb, F. Abd-El-Salam, Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine. Org. Electron. Phys. Mater. Appl. 7, 261–270 (2006). CrossRefGoogle Scholar
  35. 35.
    S.K. Arya, S.S. Danewalia, K. Singh, Frequency independent low-: K lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J. Mater. Chem. C. 4, 3328–3336 (2016). CrossRefGoogle Scholar
  36. 36.
    T.G.A. Malik, M.E. Kassεµb, N.S. Alyc, S.M. Kηalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A. 81, 675–680 (1992). CrossRefGoogle Scholar
  37. 37.
    S.A. James, A.K. Ray, J. Silver, Dielectric and optical studies of sublimed MoOPc films. Phys. Status Solidi. 129, 435–441 (1992). CrossRefADSGoogle Scholar
  38. 38.
    S. Murugavel, M. Upadhyay, A.C. conduction in amorphous semiconductors. J. Indian Inst. Sci. 91, 303–317 (2011). CrossRefGoogle Scholar
  39. 39.
    A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982). CrossRefADSGoogle Scholar
  40. 40.
    M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753 (1961). CrossRefADSGoogle Scholar
  41. 41.
    I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001). CrossRefADSGoogle Scholar
  42. 42.
    A.R. Long, N. Balkan, W.R. Hogg, R.P. Ferrier, A.C. loss in sputtered hydrogenated amorphous germanium measurements at around liquid-nitrogen temperatures. Philos. Mag. B. 45, 497–518 (1982). CrossRefADSGoogle Scholar
  43. 43.
    M.M. Abdel-Kader, M.A.F. Basha, G.H. Ramzy, A.I. Aboud, Thermal and ac electrical properties of N-methylanthranilic acid below room temperature. J. Phys. Chem. Solids 117, 13–20 (2018). CrossRefADSGoogle Scholar
  44. 44.
    D.P. Almond, G.K. Duncan, A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics. 8, 159–164 (1983). CrossRefGoogle Scholar
  45. 45.
    M.D. Earle, Electrons and holes in semiconductors. J. Franklin Inst. 252, 95 (1951). CrossRefGoogle Scholar
  46. 46.
    R.G. Chambers, The free-electron model, in Electronics in Metals and Semiconductors. Physics and its Application, 1st edn. (Springer, New Delhi, 1990). CrossRefGoogle Scholar
  47. 47.
    B. Köksoy, M. Aygün, A. Çapkin, F. Dumludağ, M. Bulut, Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties. J. Porphyr. Phthalocyanines. (2018). CrossRefGoogle Scholar
  48. 48.
    E. Yabaş, M. Sülü, F. Dumludag, A.R. Özkaya, B. Salih, Ö Bekaroglu, Electrical and electrochemical properties of double-decker Lu(III) and Eu(III) phthalocyanines with four imidazoles and N-alkylated imidazoles. Polyhedron. 42, 195–205 (2012). CrossRefGoogle Scholar
  49. 49.
    P.B. Macedo, C.T. Moynihan, R. Bose, Role of Ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glas. 13, 171–179 (1972). CrossRefGoogle Scholar
  50. 50.
    S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of I Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st edn. (McGraw-Hill, New York, 1941), pp. 13–15, (introduction)CrossRefGoogle Scholar
  51. 51.
    H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936). CrossRefADSGoogle Scholar
  52. 52.
    K.K. Srivastava, A. Kumar, O.S. Panwar, K.N. Lakshminarayan, Dielectric relaxation study of chalcogenide glasses. J. Non. Cryst. Solids. 33, 205–224 (1979). CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Physics DepartmentTafila Technical UniversityTafilaJordan
  2. 2.Chemistry DepartmentWestern Michigan UniversityKalamazooUSA
  3. 3.Physics DepartmentHashemite UniversityZarqaJordan
  4. 4.Physics DepartmentUniversity of BanhaBanhaEgypt

Personalised recommendations