Advertisement

Applied Physics A

, 124:743 | Cite as

Load drop and hardness drop during nanoindentation on single-crystal copper investigated by molecular dynamics

  • Lei Deng
  • Qitao Liu
  • Xinyun WangEmail author
  • Jianjun Li
Article
  • 145 Downloads

Abstract

Here, we present nanoindentation on single-crystal copper via large-scale molecular dynamics (MD) simulation to provide clarification on load drop and the correlated hardness drop during plastic deformation of a workpiece placed beneath an indenter. According to the clear criterion of contact between the atoms in the workpiece and in the indenter, the contact area between the indenter and workpiece is calculated, and the general hardness and the spatiotemporal distribution of the dislocations around the indenter are also obtained. In the elastic stage, MD simulation results are in good agreement with the Hertzian solution. During the indentation, dislocations are dominated by the glissile Shockley partial dislocations (SPDs), while the proportion of other sessile dislocations is low and grows sluggishly. The density of the dislocations that aggregated around the indenter remained at approximately \(10^{17}\,\text {m}^{-2}\) during the indentation process. Dislocations adhered to the indenter concentrate in the volume of the hemisphere whose radius is three times of the radius of plastic zone. Load drop takes place after hardness drop which marks the abrupt and massive growth of the glissile SPDs. The more and more dense state of atoms around the indenter caused by dislocation behaviors result in the increase of hardness, while the avalanche of glissile SPDs leads to the following drop, which occurs repeatedly and causes a sawtooth pattern of the load-depth and hardness-depth curves over the entire indentation process.

Notes

Acknowledgements

L. Deng, Q.T. Liu, X.Y. Wang, and J.J. Li acknowledge the financial support from National Science Foundation for Distinguished Young Scholars of China through Grant No. 51725504 and National Natural Science Foundation of China through Grant Nos. 51675200 and 51435007. Numerical simulations presented here were carried out using the high-performance computing experimental testbed at the National Supercomputing Centre in Shenzhen (Shenzhen Cloud Computing Centre) (see http://www.nsccsz.gov.cn/).

References

  1. 1.
    Y.Y. Lim, M.M. Chaudhri, Philos. Mag. A. 79(12), 2979 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    W. Lee, Y. Chen, Int. J. Plast. 26(10), 1527 (2010)CrossRefGoogle Scholar
  3. 3.
    T. Fu, X. Peng, Y. Zhao, C. Feng, C. Huang, Q. Li, Z. Wang, Appl. Phys. A 122(2), 67 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, Sci. Rep. 6(1), 35665 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Chiu, A. Ngan, Acta Mater. 50(10), 2677 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, Acta Mater. 56(1), 31 (2008)CrossRefGoogle Scholar
  7. 7.
    E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Acta Mater. 57(2), 559 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Lilleodden, J. Zimmerman, S. Foiles, W. Nix, J. Mech. Phys. Solids. 51(5), 901 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    J. Lian, J. Wang, Y.Y. Kim, J. Greer, J. Mech. Phys. Solids. 57(5), 812 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, S. Im, Mech. Mater. 37(10), 1035 (2005)CrossRefGoogle Scholar
  11. 11.
    D. Mordehai, M. Kazakevich, D.J. Srolovitz, E. Rabkin, Acta Mater. 59(6), 2309 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Remington, C. Ruestes, E. Bringa, B. Remington, C. Lu, B. Kad, M. Meyers, Acta Mater. 78, 378 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Kositski, D. Mordehai, Acta Mater. 90, 370 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Kositski, O. Kovalenko, S.W. Lee, J.R. Greer, E. Rabkin, D. Mordehai, Sci. Rep. 6, 25966 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    W.D. Nix, H. Gao, J. Mech. Phys. Solids. 46(3), 411 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    M.F. Ashby, Philos. Mag. 21(170), 399 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    C. Ruestes, A. Stukowski, Y. Tang, D. Tramontina, P. Erhart, B. Remington, H. Urbassek, M. Meyers, E. Bringa, Mater. Sci. Eng. A 613, 390 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Stukowski, K. Albe, Model. Simul. Mater. Sci. Eng. 18(8), 085001 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Gao, C.J. Ruestes, D.R. Tramontina, H.M. Urbassek, J. Mech. Phys. Solids 75, 58 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    G.Z. Voyiadjis, M. Yaghoobi, Mater. Sci. Eng. A 634, 20 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63(22), 224106 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    K. Maekawa, A. Itoh, Wear 188(1), 115 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Talaei, N. Nouri, S. Ziaei-Rad, Mech. Mater. 102, 97 (2016)CrossRefGoogle Scholar
  26. 26.
    G. Ziegenhain, H.M. Urbassek, A. Hartmaier, J. Appl. Phys. 107(6), 061807 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    D. Saraev, R.E. Miller, Model. Simul. Mater. Sci. Eng. 13(7), 1089 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    D. Saraev, R.E. Miller, Acta Mater. 54(1), 33 (2006)CrossRefGoogle Scholar
  29. 29.
    J. Hua, A. Hartmaier, Model. Simul. Mater. Sci. Eng. 18(4), 045007 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248(4954), 454 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, New York, 1985)zbMATHCrossRefGoogle Scholar
  32. 32.
    J. Alcalá, R. Dalmau, O. Franke, M. Biener, J. Biener, A. Hodge, Phys. Rev. Lett. 109(7), 075502 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    T. Tsuru, Y. Shibutani, Phys. Rev. B 75, 035415 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    H. Liang, C. Woo, H. Huang, A. Ngan, T. Yu, Comput. Model. Eng. Sci. 6(1), 105 (2004)Google Scholar
  35. 35.
    S. Goel, A. Kovalchenko, A. Stukowski, G. Cross, Acta Mater. 105, 464 (2016)CrossRefGoogle Scholar
  36. 36.
    Q. Liu, L. Deng, X. Wang, Mater. Sci. Eng. A 676, 182 (2016)CrossRefGoogle Scholar
  37. 37.
    R.M.J. Cotterill, Phys. Lett. A 60(1), 61 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    W.M. Mook, C. Niederberger, M. Bechelany, L. Philippe, J. Michler, Nanotechnology 21(5), 055701 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Hirth, J. Lothe, Thoery of Dislocation (Wiley, New York, 1982)Google Scholar
  40. 40.
    K. Durst, B. Backes, M. Gken, Scr. Mater. 52(11), 1093 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Swadener, E. George, G. Pharr, J. Mech. Phys. Solids 50(4), 681 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    D. Wu, T. Nieh, Mater. Sci. Eng. A 609, 110 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Kamimura, K. Edagawa, S. Takeuchi, Acta Mater. 61(1), 294 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Chandra, M. Samal, V. Chavan, S. Raghunathan, Int. J. Plast. 101, 188 (2018)CrossRefGoogle Scholar
  45. 45.
    F.C. Nix, D. MacNair, Phys. Rev. 60(8), 597 (1941)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations