Applied Physics A

, 124:730 | Cite as

Study of structural, morphological, optical, and dielectric behaviour of zinc-doped nanocrystalline lanthanum chromite

  • Naima Zarrin
  • Shahid HusainEmail author


The zinc (Zn)-doped-lanthanum chromite [LaCr1−xZnxO3 (0 ≤ x ≤ 0.3)] samples have been synthesised through sol–gel auto-combustion process. The influence of Zn doping on micro and morphological structure as well as on optical and dielectric properties of LaCrO3 has been analysed. Micro-structural studies have been performed using X-ray diffraction and Fourier transform infrared spectroscopy. These studies confirm the formation of single-phase samples. Rietveld refinement employing FULLPROF software is used to obtain lattice parameters, unit cell volume, density, bond lengths, and bond angles. Crystallite size is calculated using Scherrer equation. In addition, Williamson–Hall analysis is used to calculate the crystallite size and lattice strain. Crystallite size and unit cell volume are found to increase with increase in Zn content. Surface morphology is examined using the SEM–EDX analysis, which ratifies the formation of regular and homogeneous samples. The optical energy bandgap, Eg, decreases, while Urbach energy increases with the increase in Zn doping. Dielectric constant (ɛʹ) decreases with the increase in frequency, but increases with increase in the Zn doping. All the samples follow universal dielectric response model in the low-frequency range. The increase in ac conductivity with the increase in frequency indicates that the conduction mechanism is governed through small polaron hopping between localized states.


  1. 1.
    P. Monthoux, D. Pines, G.G. Lonzarich, Nature 450, 1177 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J. Tao, D. Niebieskikwiat, M. Varela, W. Luo, M.A. Schofield, Y. Zhu, M.B. Salamon, J.M. Zuo, S.T. Pantelides, S.J. Pennycook, Phys. Rev. Lett. 103, 097202 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K.H. Ahn, X.W. Wu, K. Liu, C.L. Chien, Phys. Rev. B 54, 15299 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, Euro Phys. Lett. 101, 17008 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.A. Spaldin, Multiferroic materials tower up. Phys. World, 20–21 (2004)CrossRefGoogle Scholar
  6. 6.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  7. 7.
    J.-S. Zhou, J.A. Alonso, A. Muonz, M.T. Fernandez-Dıaz, J.B. Goodenough, Phys. Rev. Lett. 106, 057201 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Neumeier, H. Terashita, Phys. Rev. B 70, 214435 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    J. Sfeir, J. Power Sources 118, 276 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M.F.M. Zwinkels, O. Haussner, P. Govind Menon, S.G. Jaras, Catal. Today 47, 7382 (1999)CrossRefGoogle Scholar
  11. 11.
    J.B. Heywood, G.J. Womack (eds.), Open-cycle MHD power generation (Pergamon Press, Oxford, 1969)Google Scholar
  12. 12.
    N. Soltani, S. Hosseini, A. Kompany, Phys. B 404, 4007 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Lund, T. Jacobsen, K. Vels Hansen, M. Mogensen, J. Solid State Electrochem. 16, 2113 (2012)CrossRefGoogle Scholar
  14. 14.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Hwang, S. Lee, E.A. Lee, J. Moon, Y. Lim, J. Am. Ceram. Soc. 88, 3275 (2005)CrossRefGoogle Scholar
  16. 16.
    S.P.S. Badwal, Solid State Ion 143, 39 (2001)CrossRefGoogle Scholar
  17. 17.
    J.W. Fergus, Solid State Ion 171, 1 (2004)CrossRefGoogle Scholar
  18. 18.
    U.O. Madelung, M. Rössler, Schulz, in Ternary Compounds, Organic Semiconductors, Landolt–Börnstein Group III Condensed Matter, vol 41E (Springer, Berlin, 2000), pp. 1–15Google Scholar
  19. 19.
    G.J. Zhang, Y.W. Song, H. Xiong, J.Y. Zheng, Y.Q. Jia, Mater. Chem. Phys. 73, 101–105 (2002)CrossRefGoogle Scholar
  20. 20.
    V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, J. Mater. Res. Bull. 47, 1861 (2012)CrossRefGoogle Scholar
  21. 21.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  22. 22.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ilham Chadli, M.A. Omari, B.A. Dalo, Albiss, J Sol Gel Sci. Technol. 80, 598 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Ciambelli, S. Cimino, S. De Rossi, M. Faticanti, L. Lisi, G. Minelli, I. Pettiti, P. Porta, G. Russo, M. Turco, Appl. Catal. B Environ. 24, 243 (2000)CrossRefGoogle Scholar
  25. 25.
    T. Ungar, J. Mater. Sci. 42, 1584 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Husain, A.O.A. Keelani, W. Khan, Nano-Struct. Nano-Objects. 15, 17 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Yazdanbakhsh, H. Tavakkoli, S.M. Hosseini, S. Afr. J. Chem. 64, 71 (2011)Google Scholar
  28. 28.
    A. Zenkov, Int. J. Quantum Chem. 14, 3864 (2011)Google Scholar
  29. 29.
    K. Li, D. Wang, F. Wu, T. Xie, T. Li, Mater. Chem. Phys. 60, 226 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    L.A. Marusak, R. Messier, W.B. White, J. Phys. Chem. Solids 4, 981 (1980)CrossRefGoogle Scholar
  31. 31.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, Hoboken, 1969)Google Scholar
  32. 32.
    M. Enhessari, A. Salehabdi, A. Khoobi, R. Amiri, Mat. Sci. Poland 35, 368 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Nashim, K.M. Parida, J. Mater. Chem. A 2, 18405 (2014)CrossRefGoogle Scholar
  34. 34.
    V. Pamukchiev, Z. Levi, E. Savova, Semicond. Sci. Technol. 121, 1390 (1998)Google Scholar
  35. 35.
    E.P. O’Reilly, J. Robertson, Phys. Rev. B 34, 8684 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    S. Pačesová, B. Březina, L. Jastrabík, Phys. Stat. Sol. B 116, 645 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    M.V. Kruik, Phys. Stat. Sol. A 8, 9 (1971)ADSCrossRefGoogle Scholar
  38. 38.
    I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, J. Appl. Phys. 112, 074105 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    C.G. Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  40. 40.
    A.K. Jonscher, Nature 253, 717 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations