Advertisement

Applied Physics A

, 124:688 | Cite as

Preparation and luminescence properties of white light-emitting phosphors LaAl2.03B4O10.54: Dy3+

  • Junqin Feng
  • Yihao Chen
  • Zhongfei Mu
  • Shaoan Zhang
  • Zhaogang Nie
  • Daoyun Zhu
  • Xing Feng
  • Qingtian Zhang
  • Fugen Wu
Article
  • 19 Downloads

Abstract

A series of novel white light-emitting LaAl2.03B4O10.54: Dy3+ phosphors for light-emitting diode applications were synthesized by high-temperature solid-state reactions. The results of X-ray diffraction measurement indicate that the crystal structure of the phosphors is LaAl2.03B4O10.54. The photoluminescence spectra of Dy3+-doped samples under the excitation at 347 nm consist of two main groups of emission lines peaking at 480 and 571 nm, which can be assigned to the optical transitions 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 of Dy3+, respectively. Based on the recorded UV–visible diffuse reflectance spectra, the values of the optical band gaps of LaAl2.03B4O10.54 and La0.96Al2.03B4O10.54: 0.04 Dy3+ were ascertained to be 3.87 and 3.62 eV, respectively. The decay lifetimes decreases with the increasing doping concentration of Dy3+. The Commission International de I’Eclairage color coordinates of Dy3+-doped samples fall in the white region. The study about the photoluminescence spectra at rising temperature shows that our phosphors own excellent thermal stability. All these investigation results indicate that LaAl2.03B4O10.54: Dy3+ as white light-emitting phosphor has potential applications in white light-emitting diodes.

Notes

Acknowledgements

This work is financially supported by the Science and Technology Program of Guangzhou, China (201804010257, 201707010324 and 201607010345), Key Platforms and Research Projects of Department of Education of Guangdong Province (2016KTSCX031, 2017KTSCX054), National Natural Science Foundation of China (11774071, 21602014 and 11704078).

References

  1. 1.
    A. Birkel, A.K. Denault, C.N. George, C.E. Doll, B. Hery, A.A. Mikhailovsky, C.S. Birkel, B.C. Hong, R. Seshadri, Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting. Chem. Mater. 24, 1198 (2012)CrossRefGoogle Scholar
  2. 2.
    C.H. Zhang, Y.F. Liu, J.H. Zhang, X. Zhang, J.X. Zhang, Z.X. Cheng, J. Jiang, H.C. Jiang, A single-phase Ba9Lu2Si6O24: Eu2+, Ce3+, Mn2+ phosphor with tunable full-color emission for NUV-based white LED applications. Mater. Res. Bull. 80, 288 (2016)CrossRefGoogle Scholar
  3. 3.
    S.A. Khan, Z. Hao, W.W. Hu, L.Y. Hao, X. Xu, N.Z. Khan, S. Agathopoulos, Novel single-phase full-color emitting Ba9Lu2Si6O24: Ce3+/Mn2+/Tb3+ phosphors for white LED applications. J. Mater. Sci. 52, 10927 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    B. Yuan, Y.H. Song, Y. Sheng, K.Y. Zheng, X.Q. Zhou, P.C. Ma, X.C. Xu, H.F. Zou, Tunable color and energy transfer in single-phase white-emitting Ca20Al26Mg3Si3O68: Ce3+, Dy3+ phosphors for UV white light-emitting diodes. J. Solid State Chem. 232, 169 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Z.W. Zhang, A.J. Song, Y. Yue, H. Zhong, X.Y. Zhang, M.Z. Ma, R.P. Liu, White light emission from Ca9Bi(PO4)7: Dy3+ single-phase phosphors for light-emitting diodes. J. Alloys Compd. 650, 410 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.W. Zhang, A.J. Song, X.H. Shen, Q. Lian, X.F. Zheng, A novel white emission in Ba10F2(PO4)6: Dy3+ single-phase full-color phosphor. Mater. Chem. Phys. 151, 345 (2015)CrossRefGoogle Scholar
  7. 7.
    J.Q. Long, F.J. Chu, Y.Z. Wang, C. Zhao, W.F. Dong, X.Y. Yuan, C.Y. Ma, Z.C. Wen, R. Ma, M.M. Du, M8MgSc (PO4)7: xDy3+ (M = Ca/Sr) single-phase full-color phosphor with high thermal emission stability. Inorg. Chem. 56(17), 10381 (2017)CrossRefGoogle Scholar
  8. 8.
    Z.G. Portakal, T. Dogan, S.B. Yegen, K. Kucuk, M. Ayvacikli, G.J. Garcia, A. Canimoglu, Y. Karabulut, M. Topaksu, N. Can, Luminescence characteristics of Dy3+ incorporated zinc borate powders. J. Lumin. 188, 409 (2017)CrossRefGoogle Scholar
  9. 9.
    P.R. Mohan, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, P.R. Biju, Synthesis and photoluminescence characteristics of near white light emitting CaB2O4:Dy3+, Li+ phosphor. J. Phys. Chem. Solids 119, 166 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    B.C. Jamalaiah, Y.R. Babu, Near UV excited SrAl2O4: Dy3+ phosphors for white LED applications. Mater. Chem. Phys. 211, 181 (2018)CrossRefGoogle Scholar
  11. 11.
    F.F. Li, Z.H. Li, X.M. Wang, M.X. Zhang, Y. Shen, P. Cai, X.Y. He, Crystal structure and luminescent property of flaky-shaped Sr4Al14O25: Eu2+, Dy3+ phosphor doped with Er3+ ions. J. Alloys Compd. 692, 10 (2017)CrossRefGoogle Scholar
  12. 12.
    L.M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C.J. Brabec, M. Batentschuk, Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor. J. Lumin. 197, 23 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Shrivastava, J. Kaur, V. Dubey, White light emission by Dy3+ doped phosphor matrices: a short review. J. Lumin. 26, 105 (2016)Google Scholar
  14. 14.
    S. Chemingui, M. Ferhi, L. Horchani-Naifer, M. Ferid, Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4. J. Lumin. 166, 82 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Z.N. Yu, J. Guo, W. Yan, W. Xue, Enhanced luminescence properties and morphology evolution of Bi1−xPO4: xDy3+ by introducing excessive PO4 3– ions. J. Alloys Compd. 703, 156 (2017)CrossRefGoogle Scholar
  16. 16.
    A.K. Kunti, N. Patra, S.K. Sharma, H.C. Swart, Radiative transition probability enhancement of white light emitting Dy3+ doped and K+ co-doped BaWO4 phosphors via charge compensation. J. Alloys Compd. 735, 2410 (2018)CrossRefGoogle Scholar
  17. 17.
    F.B. Xiong, H.F. Lin, L.J. Wang, X.G. Meng, W.Z. Zhu, White light emission in host-sensitized Dy3+ single-doped NaIn(WO4)2 phosphors. Phys. B 459, 41 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Y.Q. Zhai, Y. Han, W. Zhang, Y.J. Yin, X. Zhao, J.Y. Wang, X. Liu, Influence of doping alkali metal ions on the structure and luminescent properties of microwave synthesized CaMoO4: Dy3+ phosphors. J. Alloys Compd. 688, 241 (2016)CrossRefGoogle Scholar
  19. 19.
    M.I. Kobets, E.N. Khats’ko, K.G. Dergachev, P.S. Kalinin, Electronic paramagnetic resonance or rare-earth ions Yb3+, Pr3+, Dy3+, and Nd3+ in double molybdates and tungstenates. Low Temp. Phys. 36(7), 611 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L. Li, X.G. Liu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Photoluminescence of rare earth ions coactivated Ca9Y (VO4)7 with cold, natural and warm white emission. Mater. Chem. Phys. 158, 18 (2015)CrossRefGoogle Scholar
  21. 21.
    W.W. Xia, X.J. Wang, Z.L. Fu, S.H. Zhou, S.Y. Zhang, J.H. Jeong, Tuning of crystal phase and luminescence properties of Gd2(MoO4)3: Dy3+ phosphors. Mater. Res. Bull. 47, 2535 (2012)CrossRefGoogle Scholar
  22. 22.
    L.M. Su, X. Fan, G.M. Cai, Z.P. Jin, Tunable luminescence properties and energy transfer of Tm3+, Dy3+, and Eu3+ co-activated InNbO4 phosphors for warm-white-lighting. Ceram. Int. 42, 15994 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Yang, Q.L. Li, Y. Wang, X.Y. Liu, X.F. Wang, High-temperature high-pressure hydrothermal synthesis of Dy3+-doped YNbO4 single crystal and its luminescence properties. Chem. Res. Chin. Univ. 29(6), 1050 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Shang, C. Li, J. Lin, How to produce white light in a single phase host. Chem. Soc. Rev. 43, 1372 (2014)CrossRefGoogle Scholar
  25. 25.
    R.J. Xie, N. Hirosaki, K. Sakuma, N. Kimura, White light-emitting diodes (LEDs) using (oxy) nitride phosphors. J. Phys. D. 41, 144013 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    P. Yang, W.T. Yu, J.Y. .Wang, LaAl2.03 (B4O10) O0.54. Acta Cryst. C. 54, 11 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Y.J. Seo, D.J. Shin, Y.S. Cho, Phase evolution and microwave dielectric properties of lanthanum borate-based low-temperature co-fired ceramics materials. J. Am. Ceram. Soc. 89(7), 2352 (2006)Google Scholar
  28. 28.
    M. Maier, D.L. Trandafir, S. Simon, Effect of heat treatment time on local structure of lanthanum–aluminum–gallium–borate xerogels. Ceram. Int. 42(4), 4764 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.H. Jo, S.H.N. Doo, J.S. Lee, B.C. Mohanty, Y.S. Cho, Effect of Zn and Ca modifications on crystallization and microwave dielectric properties of lanthanum borates. J. Alloys Compd. 509(3), 849 (2011)CrossRefGoogle Scholar
  30. 30.
    S.H.N. Doo, Y.H. Jo, J.S. Lee, B.C. Mohanty, K.C. Sekhar, Y.S. Cho, Enhanced quality factor of zinc lanthanum borates-based dielectrics via the control of ZnO/B2O3 ratio. J. Am. Ceram. Soc. 93(2), 334 (2010)CrossRefGoogle Scholar
  31. 31.
    Y.H. Wang, X.X. Li, Synthesis and photoluminescence properties of LnAl3(BO3)4: Eu3+ (Ln = La3+, Gd3+) under UV and VUV excitation. J. Electrochem. Soc. 153(3), 238 (2006)CrossRefGoogle Scholar
  32. 32.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. 32, 751 (1976)CrossRefGoogle Scholar
  33. 33.
    B.C. Jamalaiah, Optimization of photoluminescence of GdAl3(BO3)4: Sm3+ phosphors for solid state lighting devices. J. Mol. Struct 1146, 546 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    A.K. Bedyal, V. Kumar, R. Prakash, O.M. Ntwaeaborwa, H.C. Swart, A near-UV converted LiMgBO3: Dy3+ nanophosphors: surface and spectral investigations. Appl. Surf. Sci. 329, 40 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    X.Y. Sun, L.W. Lin, W.F. Wang, J.C. Zhang, White-light emission from Li2Sr1–3x/2DyxSiO4 phosphors. Appl. Phys. A. 104(1), 83–88 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    M.K. Mustafa Ilhan, A. Ekmekci, C. Mergen, Yaman, Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6:Dy3+ phosphor. Int. J. Appl. Ceram. Technol. 6, 1134 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    A.R. Beck, S. Das, J. Manam, Temperature dependent photoluminescence of Dy3+ doped LiCaBO3 phosphor. J. Mater. Sci. Mater. Electron. 28, 17168 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Mondal, S. Das, J. Manam, Hydrothermal synthesis structural and luminescent properties of a Cr3+ doped MgGa2O4 near infrared long lasting nanophosphors. RSC Adv. 6(82), 484 (2016)Google Scholar
  40. 40.
    Z.W. Zhang, L. Liu, Y.H. Wang, S.T. Song, D.J. Wang, Preparation and luminescence properties of Sr7Zr(PO4)6: Dy3+ single-phase full-color phosphor. J. Mater. Sci.: Mater. Electron. 26, 4202 (2015)Google Scholar
  41. 41.
    M.M. Jiao, Q.F. Xu, C.L. Yang, M.L. Liu, Electronic structure and photoluminescence properties of single component white emitting Sr3LuNa(PO4)3F: Eu2+, Mn2+ phosphor for wLEDs. J. Mater. Chem. C .6, 4435 (2018)CrossRefGoogle Scholar
  42. 42.
    D.Y. Wang, Z.B. Tang, W.U. Khan, Y.H. Wang, Photoluminescence study of a broad yellow-emitting phosphor K2ZrSi2O7: Bi3+. Chem. Eng. J. 313, 1082 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Experimental Teaching DepartmentGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Class 6 Junior 3Guangdong Experimental High SchoolGuangzhouPeople’s Republic of China
  3. 3.Basic Teaching DepartmentGuangzhou Maritime UniversityGuangzhouPeople’s Republic of China
  4. 4.School of Physics and Optoelectronic EngineeringGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  5. 5.School of Materials and EnergyGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations