Advertisement

Applied Physics A

, 124:691 | Cite as

Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal

  • Huifeng Bo
  • Qingtao Meng
  • Hongkui Hu
  • Hongwei Zhao
  • Zhanxin Zhang
  • Qingjun Zhang
  • Caijun Zhang
Article
  • 19 Downloads

Abstract

The temperature dependent ferroelectric hysteresis properties of stoichiometric lithium niobate single crystals have been studied in this article. It is found that remnant polarization (Pr) and the coercive field (Ec) increase monotonically with increasing electric field at 293 K, and the Pr at 76 K is smaller than that at 293 K due to less switchable domains can be activated at low temperature, whereas the Ec at 76 K is larger than that at 293 K due to the trapped oxygen vacancy cannot be detrapped easily at low temperature. However, both the Pr and Ec increase when the temperature decreases from 293 to 247 K, then decrease with further decreasing temperature to 76 K. The pinning of the switched domains induces the increase of Pr and the deepening and widening of the domain wall-defect interaction potential well makes the activated domains difficult to be back-switched leads to the increase of Ec when the temperature decreases from 293 to 247 K, while less domains will be activated in the domain switching process induces the decrease of Pr and the frozen of domains with higher activation energy is the cause of Ec decreasing from 247 to 76 K.

Notes

Acknowledgements

This work was supported by the National Science Foundation (Grant Nos. 51474089, 51874137 and 11504082), Natural Science Foundation of Hebei Province (Nos. A2018209147), and the Science Foundation of North China University of Science and Technology (Nos. GP201502).

References

  1. 1.
    J.D. Witmer, J.A. Valery, P. Arrangoiz-Arriola, C.J. Sarabalis, J.T. Hill, A.H. Safavi-Naeini. Sci. Rep. 7, 46313 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Nisar, X. Zhao, A. Pan, S. Yuan, J. Xia, IEEE Photonics J. 9(1), 1–8 (2017)CrossRefGoogle Scholar
  3. 3.
    A. García-Cabañes, L. Blázquez-Castro, F. Arizmendi, Agulló-López, M. Carrascosa, Crystals 8(2), 65 (2018)CrossRefGoogle Scholar
  4. 4.
    J.F. Elvira, Á Muñoz-Martínez, C. Barroso, J.B. Denz, A. Ramiro, F. García-Cabañes, Agulló-López, M. Carrascosa, Opt. Lett. 43(1), 30–33 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    V.Y. Shur, A. Akhmatkhanov, I. Baturin, Appl. Phys. Rev. 2(4), 040604 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    V.Y. Shur, in Advanced Piezoelectric Materials (Second edn.) (Elsevier, New York, 2017), pp. 235–270CrossRefGoogle Scholar
  7. 7.
    G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84(1), 119–156 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    E. Soergel, Appl. Phys. B 81(6), 729–751 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M. De Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, Appl. Phys. Lett. 85(14), 2785–2787 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H. Wu, J. Wang, S. Cao, L.-Q. Chen, T. Zhang, Smart Mater. Struct. 23(2), 025004 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Patel, A. Chauhan, A. Chauhan, R. Vaish, Mater. Res. Express 2(3), 035501 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhang, X. Zhong, Z. Chen, J. Wang, Y. Zhou, J. Appl. Phys. 110(1), 014102 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Pramanick, A.D. Prewitt, J.S. Forrester, J.L. Jones, Crit. Rev. Solid State Mater. Sci. 37(4), 243–275 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Dawber, K. Rabe, J. Scott, Rev. Modern Phys. 77(4), 1083 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C. Park, D. Chadi, Phys. Rev. B 57(22), R13961 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    X. Lou, J. Appl. Phys. 105(2), 024101 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R. Yimnirun, S. Wongsaenmai, R. Wongmaneerung, N. Wongdamnern, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Phys. Scr. 2007(T129), 184 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Picinin, J. Lente, Eiras, J. Rino, Phys. Rev. B 69(6), 064117 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceNorth China University of Science and TechnologyTangshanChina
  2. 2.Analysis and Testing CenterNorth China University of Science and TechnologyTangshanChina
  3. 3.College of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina

Personalised recommendations