Skip to main content
Log in

Nanostructured SnO2 thin films: effects of porosity and catalytic metals on gas-sensing sensitivity

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an overview of structural and sensing properties of undoped and Pt/Pd-doped tin oxide (SnO2) thin films obtained by the aerosol pyrolysis (pyrosol process) is provided. The detection mechanism and the role of the small metal nanoparticles (NPs) in the sensing processes have been discussed in detail. It has been specifically shown how tightly the film microstructure correlates with the catalytic metal concentration, and thus acts as a driving factor of film sensitivity evolution. The normalized evolution of the experimental sensitivity is closely fitted by the product of film porosity and NPs number density. Under CO and H2 mixed with neutral gas, dynamic electrical conductance measurements show that the dispersions of metallic elements induce a two-step time-dependent behavior. Only, when they are incorporated in a very weak quantity (which corresponds to very small particles), Pt/Pd nanoparticles change in a reversible manner, their oxidation state, according to the nature of the atmosphere. An electronic model has been proposed to explain the high sensitivity observed at low temperature. Different situation has been observed in the presence if H2S gas when the conductance increases smoothly without any induction period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W. Gopel, Solid-state chemical sensors: atomistic models and research trends. Sens. Actuators A 56, 83 (1996)

    Article  Google Scholar 

  2. D.E. Williams, Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B 57, 1 (1999)

    Article  Google Scholar 

  3. N. Yamazoe, N. Miura, S. Yamaguchi (eds.), Chemical Sensor Technology (Kodansha, Tokyo, 1992), p. 19

    Book  Google Scholar 

  4. K.G. Girija, K. Somasundaram, A. Topkar, R.K. Vatsa, Highly selective H2S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target. J. Alloy. Compd. 684, 15e20 (2016)

    Article  Google Scholar 

  5. C.G. Fonstad, R.H. Rediker, Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911 (1971)

    Article  ADS  Google Scholar 

  6. J.F. McAleer, A. Maignan, P.T. Moseley, D.E. Williams, J. Chem. Soc. Faraday Trans. 1, 783 (1989)

    Article  Google Scholar 

  7. J.N. Zemel, Theoretical description of gas-film interaction on SnOx. Thin Solid Films 163, 189 (1988)

    Article  ADS  Google Scholar 

  8. Z. Lin, N. Li, Z. Chen, P. Fu, Sens. Actuators B 239, 501–510 (2017)

    Article  Google Scholar 

  9. A.V. Tadeev, G. Delabouglise, M. Labeau, Influence of Pd and Pt additives on the microstructural parameters and electrical properties of SnO2 based sensors. Mater. Sci. Eng. 57, 76 (1998)

    Article  Google Scholar 

  10. S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, Jpn. J. Appl. Phys. 27, 1798 (1988)

    Article  ADS  Google Scholar 

  11. M. Gaidi, M. Labeau, B. Chenevier, J.L. Hazemann, In-situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas sensors. Sens. Actuators B 48, 248 (1998)

    Article  Google Scholar 

  12. M. Gaidi, J.L. Hazemann, I. Matko, B. Chenevier, M. Rumyantseva, A. Gaskov, M. Labeau, Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors: investigations of the catalytic effect. J. Electrochem. Soc. 147, 3131 (2000)

    Article  Google Scholar 

  13. M. Matko, J.L. Gaidi, B. Hazemann, Chenevier, M. Labeau, Electrical properties under polluting gas (CO) of Pt- and Pd- doped polycrystalline SnO2 thin films: analysis of the metal aggregate size effect. Sens. Actuators B 59, 210 (1999)

    Article  Google Scholar 

  14. B. Gautheron, Ph.D. Thesis, Université Joseph Fourier, Grenoble (1992)

  15. H.P. Dang, Q.H. Luc, V.H. Le, T. Le, The influence of deposition temperature and annealing temperature on Ga-doped SnO2 films prepared by direct current magnetron sputtering. J. Alloy. Compd. 687, 1012–1020 (2016)

    Article  Google Scholar 

  16. S. Haireche, A. Boumeddiene, A. Guittoum, A. El Hdiy, A. Boufelfel, Structural, morphological and electronic study of CVD SnO2:Sb films. Mater. Chem. Phys. 139(2–3), 871–876 (2013)

    Article  Google Scholar 

  17. Y. Takahashi, Y. Wada, Dip-coating of Sb-doped SnO2 films by ethanolamine-alkoxide method. J. Electrochem. Soc. 137(1), 267–272 (1990)

    Article  Google Scholar 

  18. M.J. Willett, V.N. Burganos, C.D. Tsakiroglou, A.C. Payatakes, Gas sensing and structural properties of variously pretreated nanopowder tin (IV) oxide samples. Sens. Actuators B 53, 76 (1998)

    Article  Google Scholar 

  19. C. Nayral, E. Viala, P. Fau, F. Senocq, J.C. Jumas, A. Maisonnat, B. Chaudret, Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chem. Eur. J. 6, 4082 (2000)

    Article  Google Scholar 

  20. Z. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, C.C. Liu, Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B 5, 188 (1998)

    Article  Google Scholar 

  21. F.H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavia, A.A. Khodadadi, Y. Shimizu, Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuators B 223, 429–439 (2016)

    Article  Google Scholar 

  22. M. Labeau, B. Gautheron, F. Cellier, M. Vallet-Regi, E. Garcia, J.M.G. Carbet, Pt nanoparticles dispersed on SnO2 thin films: a microstructural study. J. Solid State Chem. 102, 434 (1993)

    Article  ADS  Google Scholar 

  23. M. Ohring, The Materials Science of Thin films (Academic Press, New York, 1992), p. 233

    Google Scholar 

  24. V. Matko, M. Gaidi, B. Chenevier, A. Charai, W. Saikaly, M. Labeau, Pt doping of SnO2 thin films: a transmission electron microscopy analysis of the porosity evolution, J. Electrochem. Soc. 149, H153–H158 (2002)

    Article  Google Scholar 

  25. Z.U. Abideen, J.-H. Kim, S.S. Kim, Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sens. Actuators B 238, 374–380 (2017)

    Article  Google Scholar 

  26. M. Gaidi, B. Chenevier, M. Labeau, Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors. Sens. Actuators B 62, 43 (2000)

    Article  Google Scholar 

  27. M. Gaidi, M. Labeau, B. Chenevier, J.L. Hazemann, In situ simultaneous XAS and electrical characterizations of Pt-doped tin oxide thin film deposited by pyrosol method for gas sensors application. Sens. Actuators B 120, 313–315 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Gaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidi, M. Nanostructured SnO2 thin films: effects of porosity and catalytic metals on gas-sensing sensitivity. Appl. Phys. A 124, 725 (2018). https://doi.org/10.1007/s00339-018-2111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2111-6

Navigation