Advertisement

Applied Physics A

, 124:684 | Cite as

Synthesis and characterization of thermochromic Ag2HgI4 thin films

  • Talaat A. Hameed
  • I. M. El Radaf
  • G. B. Sakr
Article

Abstract

Silver mercury iodide thin films (Ag2HgI4) were successively deposited onto pre-cleaned glass substrates at room temperature by chemical bath deposition at different deposition times producing films of different thicknesses. The elemental composition of the as-deposited films measured by energy dispersive X-ray analysis shows the formation of stoichiometric Ag2HgI4 thin films. X-ray diffraction patterns reveal that Ag2HgI4 films are single phase of a polycrystalline structure, and have a dominant diffraction along [111] direction. The structure of the films was further investigated by transmission electron microscope verifying the polycrystalline nature of samples and nearly matching with X-ray diffraction data. The FESEM images reveal dense and well-defined grains. The optical properties of as-deposited films have been calculated from the recorded transmission and reflection data in the spectral range 400–2500 nm. The analysis of the optical absorption coefficient indicates the presence of direct and indirect optical transition whose values decrease with the increase of thickness, while the values Urbach energy follow is a reverse behavior. The study of optic parameters of 558 nm thick film heated at 330 K was also investigated. The electrical conductivity was measured by four-probe experiment in the range from 300 to 500 K. The activation energy was found to nearly equal half of the direct band gap indicating the intrinsic conduction of studied films is dominant.

References

  1. 1.
    Ž. Rašković-Lovre, T.T. Mongstad, S. Karazhanov, C.C. You, S. Lindberg, M. Lelis, D. Milcius, S. Deledda, Annealing-induced structural rearrangement and optical band gap change in Mg–Ni–H thin films. Mater. Res. Express 4, 016405(2017)ADSCrossRefGoogle Scholar
  2. 2.
    Ž. Rašković-Lovre, T. Mongstad, S. Karazhanov, S. Lindberg, C.C. You, S. Deleddaa, Thermochromic and photochromic color change in Mg–Ni–H thin films. Mater. Lett. 188, 403–405 (2017)CrossRefGoogle Scholar
  3. 3.
    A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, Optical properties of thermochromic Cu2HgI4 thin films. J. Phys. D: Appl. Phys. 41(7), 025311 (2008) pp)CrossRefGoogle Scholar
  4. 4.
    P. Bamfield, Chromic Phenomena; Technological Applications of Colour Chemistry, 2nd ed. (Royal Society of Chemistry, Cambridge, 2001), p. 34Google Scholar
  5. 5.
    P.K. Peter, S.J. Lippard, Copper(II) chemistry in hexaaza binucleating macrocycles: hydroxide and acetate derivatives. J. Am. Chem.Soc. 106, 2328 (1984)CrossRefGoogle Scholar
  6. 6.
    R. Yvette Agnus, J.P. Louis, R. Gisselbrecht, Weiss, Dicopper(II) chloro and azido inclusion complexes of the [24-ane-N2S4] binucleating macrocycle. Synthesis, crystal and molecular structures, and spectral, magnetic, and electrochemical properties. J. Am. Chem. Soc. 106, 93 (1984)CrossRefGoogle Scholar
  7. 7.
    D.E. Fenton, U. Casellato, M. Vidali, The evolution of binucleating ligands. Chim. Acto 62, 57 (1982)Google Scholar
  8. 8.
    Y. Jin, C. Shi, X. Li, F. Wang, M. Ge, Preparation and luminescence studies of thermosensitive PAN luminous fiber based on the heat sensitive rose red TF-R1 thermochromic pigment. Dyes Pigm. 139, 693–700 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Abdullaha, A.R. Talibb, A.A. Jaafar, M.A. Salle, W.T. Chong. Exp. Thermal Fluid Sci. 34, 1089–1121 (2010)CrossRefGoogle Scholar
  10. 10.
    B. Baranowski, M. Friesel, A. Lunden, High-pressure differential scanning calorimetry study of Ag2HgI4. Part I. Solid State lonics 9(& 10), 1179–1184 (1983)CrossRefGoogle Scholar
  11. 11.
    A. Noorussaba, Ahmad, Phase transition study in a [Cu2HgI4: 0.xAgI] mixed composite system. Bull. Mater. Sci. 33, 419–425 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Funke, Crystal structure of the compounds A2MnX4−xX′x (A = NH4, Rb, Cs; X = Cl; X′ = Br, I; x = 0, 1, 2) and magnetic susceptibility of A2MnCl4 (A = Rb, Cs). Prog. Solid State Chem. 11, 345–402 (1976)CrossRefGoogle Scholar
  13. 13.
    S. Jay, R.N. Chivian, D.D. Claytor, Eden, R.B. Hemphill, Infrared recording with thermochromic Cu2Hgl4. Appl. Opt. 11, 2649 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    S. Jay, R.N. Chivian, Claytor, D.D. Eden, Infrared Holography at 10.6 µm. Appl. Phys. Lett. 15, 123 (1969)ADSCrossRefGoogle Scholar
  15. 15.
    S. Hull, D.A. Keen, Structural characterization of the beta to alpha superionic transition in Ag2HgI4 and Cu2HgI4. J. Phys. Condens. Matter. 12, 3751–3765 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    K. Wakamura, Characteristic properties of dielectric and electronic structures in superionic conductors. Solid State Ionics 149, 73–80 (2002)CrossRefGoogle Scholar
  17. 17.
    I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci, M. Cestelli Guidi, M. Piccinini, E. Spohrand, A.I. Popov, Far IR spectra of Ag2CdI4 at temperature range 10–420 K: complementary experimental and first-principle theoretical study. Eur. Phys. J. B 70, 443–447 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.A.A. Ketelaar, The relation between electrolytic conduction in solids and crystal structure. Trans. Faraday SOC. 34, 874–882 (1938)CrossRefGoogle Scholar
  19. 19.
    J.A.A.Z. Ketelaar, Phys. Chem., Abt. B 268, 327–334 (1934)Google Scholar
  20. 20.
    D.C. Parfitta, S. Hullb, D.A. Keen, W. Crichton, High-pressure dissociation of silver mercury iodide, Ag2HgI4. J. Solid State Chem. 177, 3715–3720 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Friesel, B. Baranowski, A. Lundén, Differential scanning calorimetry as a tool for evaluating preparation techniques, and detecting impurities, metastable states, etc. in silver mercury iodide (Ag2HgI4). Thermochrmrcu Acta 131, 191–210 (1988)CrossRefGoogle Scholar
  22. 22.
    R. Sudharsanan, B.P. Clayman, Far infrared studies on the superionic conductor Ag2HgI4. Solid State Ion. 15, 287–291 (1985)CrossRefGoogle Scholar
  23. 23.
    J.w. brightwell, C.N. Burklery, R.C. Hollyoak, B. ray, Structural and phase equilibrium comparisons of Ag2HgI4 with Ag2CdI4 and Ag2ZnI4. J. Mater. Sci. Lett. 3, 443–446 (1984)CrossRefGoogle Scholar
  24. 24.
    S. Hull, Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    H. Hahn, G. Frank, W. Klingler, Z. Anorg, On the structure of βCu2HgJ4 and β-Ag2HgJ4. Allg. Chem. 279, 271–280 (1955)CrossRefGoogle Scholar
  26. 26.
    K.W. Browall, J.S. Kasper, Single-crystal studies of β-Ag2HgI4. J. Solid State Chem. 10, 20–28 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    M. Paic, V. Paic, Phases and phase transitions of the superionic conductor Ag2HgI4 in the temperature range between 4.2 K and 370 K detected by diffuse reflectance spectrometry. Solid State Ioni. 14, 187–197 (1984)CrossRefGoogle Scholar
  28. 28.
    L. Suchow, G.R. Pond, Electrical conductivity of Ag2HgI4, Cu2HgI4 and their eutectoid. J. Am. Chem. Soc. 75, 5242–5244 (1953)CrossRefGoogle Scholar
  29. 29.
    J.A.A.Z. Ketelaar, Phys. Chem. Abt. B, 53–56 (1935)Google Scholar
  30. 30.
    I. Kh. B.V. Akopyan, Novikov, Determination of the heat of superionic Ag2HgI4 and Cu2HgI4 crystals formation in the course of the solid state reactions. Solid State Ion. 89, 333–335 (1996)CrossRefGoogle Scholar
  31. 31.
    R.W. Asmussen, P. Andersen, The magnetic properties of [Co-(NH3)5(NO)]Cl2 (black) and [Co(NH3)5(NO)](NO3)2.½H2O (red). Studies in magneto chemistry 21. Acta Chem. Scand. 12, 939–944 (1958)CrossRefGoogle Scholar
  32. 32.
    M. Dahmani, M. Tarik Ouahrani, A.H. Mebrouki, Reshak, Towards a deeper understanding of physical and chemical properties of Ag2HgI4 and Cu2HgI4 defective crystals, from first principles calculations. Mater. Sci. Semicond. Process. 27, 433–445 (2014)CrossRefGoogle Scholar
  33. 33.
    A.N. Georgobiani, S.I. Radautsan, I.M. Tiginyanu, Sov. Phys. Semicond. 19, 121–132 (1985)Google Scholar
  34. 34.
    S.I. Radautsan, I.M. Tiginyanu, Defect engineering in II–III2–VI4 and related compounds. Jpn. J. Appl. Phys. 32, 5–9 (1993) Suppl. 32 – 3CrossRefGoogle Scholar
  35. 35.
    A.S. Hassanien, A. Alaa, Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloy. Compd. 648, 280–290 (2015)CrossRefGoogle Scholar
  36. 36.
    Joint Committee on, Powder Diffraction Standards 2002 JCPDS-ICDD-Card No: 750918Google Scholar
  37. 37.
    M. Thirumoorthi, J.T. Prakash, Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method, Super lattice. Microstruct. 85, 237–247 (2015)CrossRefGoogle Scholar
  38. 38.
    M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloy. Compd. 705, 333–339 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Structure, optical and electrochromic properties of NiO thin films. Phys. B 405, 3412–3420 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    T.A. Hameed, W. Cao, E.M. Abdelrazek, I.K. El Zawawi, B.A. Mansour, H.E. Elsayed-Ali, Effect of substrate temperature on properties of Cu(In, Ga,Al)Se2 films grown by magnetron sputtering, J. Mater. Sci. Mater. Electron 27(4), 3209–3216 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1969)Google Scholar
  42. 42.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  43. 43.
    D.J. Dunstan, Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C: Solid State Phys. 30, L419–L424 (1982)CrossRefGoogle Scholar
  44. 44.
    M. Zanini, J. Tauc, J.Non-Cryst.Solids 23, 349 (1977)ADSCrossRefGoogle Scholar
  45. 45.
    E.A. Davis, N.F. Mott. Philos. Mag. 22, 903 (1970)ADSCrossRefGoogle Scholar
  46. 46.
    I.P. Jacques, Optical process in Semiconductor (Engle wood cliffs, New Jersey, 1971)Google Scholar
  47. 47.
    Y. Gupta, P. Arun, Refractive Index of p-SnS thin films and its dependence on defects, cond-mat.mtrl-sci. (arXiv:1602.00120v1) Google Scholar
  48. 48.
    O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965)Google Scholar
  49. 49.
    M.M. El-Nahass, I.T. Zedan, F.S. Abu-Samah, Effect of annealing on structure and optical properties of Ga5Se95 films. Opt. Laser Technol. 44, 621 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    J. Shadia, Ikhmayies, The influence of annealing on the optical properties of spray-deposited SnO2:F thin films international. J. Hydrog. Energy 41, 12626–12633 (2016)CrossRefGoogle Scholar
  51. 51.
    J.S. Blakemore, Solid State Physics, 2nd ed. (W.B. Saunders Company, Philadelphia, 1974)Google Scholar
  52. 52.
    A.M. Shakra, M. Fadel, G.B. Sakr, Electrical and switching behavior of quaternary defect chalcopyrite CdInGaSe4 thin films. Appl. Phys. A 122, 147 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    N.F. Mott, Conduction in non-crystalline systems IV; Anderson localization in a disordered lattice. Phil. Mag. 22, 7–29 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Talaat A. Hameed
    • 1
  • I. M. El Radaf
    • 2
  • G. B. Sakr
    • 3
  1. 1.Physics Research Division, Solid State Physics DepartmentNational Research CentreGizaEgypt
  2. 2.Physics Division, Electron Microscope and Thin Films DepartmentNational Research CentreGizaEgypt
  3. 3.Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations