Advertisement

Applied Physics A

, 124:682 | Cite as

Decarburization during laser surface processing of steel

  • Niroj Maharjan
  • Wei ZhouEmail author
  • Yu Zhou
  • Naien Wu
Article

Abstract

Unwanted removal of carbon from surface may occur during laser surface processing of steels despite the short interaction time and thermal cycle. However, no attention is paid in literature to investigate this phenomenon systematically. This paper presents two different scenarios during laser surface processing of steels: complete absence of decarburization for an alloy steel but decarburization with depth up to 70 µm for a plain carbon steel, showing that alloying elements tend to retard decarburization process by reducing the mobility of carbon in austenite. Further analysis reveals that the laser-induced decarburization is dependent primarily on peak temperature and austenitization kinetics.

Notes

Acknowledgements

Support from A*STAR SINGA Scholarship, Nanyang Technological University and Advanced Remanufacturing and Technology Center (ARTC), Singapore under the Collaborative Research Project RCA-15/287 is gratefully acknowledged.

References

  1. 1.
    D. Herring, Atmosphere Heat Treatment: Atmospheres, Quenching, Testing, vol. 2, 1st edn. (BNP Media, Troy, 2015)Google Scholar
  2. 2.
    R.I. Carroll, J.H. Beynon, Wear 260, 523 (2006)CrossRefGoogle Scholar
  3. 3.
    A.K. Nath, S. Sarkar, Advances in Laser Materials Processing, 2nd edn. (Elsevier, New York, 2018), pp 257–298CrossRefGoogle Scholar
  4. 4.
    C.T. Kwok, K.H. Lo, F.T. Cheng, H.C. Man, Surf. Coatings Technol. 166, 221 (2003)CrossRefGoogle Scholar
  5. 5.
    J.H. Abboud, K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, J. Mater. Process. Technol. 182, 427 (2007)CrossRefGoogle Scholar
  6. 6.
    M.F. Yan, Y.X. Wang, X.T. Chen, L.X. Guo, C.S. Zhang, Y. You, B. Bai, L. Chen, Z. Long, R.W. Li, Mater. Des. 58, 154 (2014)CrossRefGoogle Scholar
  7. 7.
    Y.X. Wang, M.F. Yan, B. Li, L.X. Guo, C.S. Zhang, Y.X. Zhang, B. Bai, L. Chen, Z. Long, R.W. Li, Opt. Laser Technol. 67, 57 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhao, B. Song, Y. Zhang, X. Zhu, Q. Wei, Y. Shi, Mater. Sci. Eng. A 647, 58 (2015)CrossRefGoogle Scholar
  9. 9.
    ASTM, Subcomittee, E04.14, 10 (2014)Google Scholar
  10. 10.
    P.L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, R. Vestergaard, Int. J. Solids Struct. 33, 221 (1996)CrossRefGoogle Scholar
  11. 11.
    L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi, Surf. Coatings Technol. 195, 264 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Mioković, V. Schulze, O. Vöhringer, D. Löhe, Acta Mater. 55, 589 (2007)CrossRefGoogle Scholar
  13. 13.
    S.N. Aqida, D. Brabazon, S. Naher, Appl. Phys. A 110, 673 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    N. Maharjan, W. Zhou, Y. Zhou, N. Wu, High-Power Laser Mater. Process. Appl. Diagnostics, Syst. VII. (International Society for Optics and Photonics, San Francisco, 2018)Google Scholar
  15. 15.
    A. Nagode, K. Jerina, I. Jerman, D. Vella, M. Bizjak, B. Kosec, B. Karpe, B. Zorc, J. Sol-Gel. Sci. Technol. 86, 568 (2018)CrossRefGoogle Scholar
  16. 16.
    J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. (Springer, New York, 2017)Google Scholar
  17. 17.
    Z.-Q. Liu, G. Miyamoto, Z.-G. Yang, T. Furuhara, Acta Mater. 61, 3120 (2013)CrossRefGoogle Scholar
  18. 18.
    F. Boué-Bigne, Spectrochim. Acta Part B At. Spectrosc. 63, 1122 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P.T. Pinard, A. Schwedt, A. Ramazani, U. Prahl, S. Richter, Microsc. Microanal. 19, 996 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    G.F. Vander Voort, Adv. Mater. Process. 137, 6 (2015)Google Scholar
  21. 21.
    G. Krauss, Steels: Processing, Structure, and Performance. (ASM International, Material Park, Ohio, 2015)Google Scholar
  22. 22.
    E. Gharibshahiyan, A.H. Raouf, N. Parvin, M. Rahimian, Mater. Des. 32, 2042 (2011)CrossRefGoogle Scholar
  23. 23.
    Z.X. Qiao, Y.C. Liu, L.M. Yu, Z.M. Gao, Appl. Phys. A 95, 917 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    H.D. Alvarenga, T. Van De Putte, N. Van Steenberge, J. Sietsma, H. Terryn, Metall. Mater. Trans. A 46, 123 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Pantsar, J. Mater. Process. Technol. 189, 435 (2007)CrossRefGoogle Scholar
  26. 26.
    R.D. Cioffi, R. Wright, A comparison study on depth of decarburization and the role of stable carbide forming elements in 1075 plain carbon steel and 440 A stainless steel (New York, n.d.). https://www.forging.org/uploaded/content/members/public/PDF/Role%20of%20Stable%20Carbide%20Formers%20on%20Decarburization%20Depth.pdf
  27. 27.
    O.K. Rowan, R.D. Sisson, J. Phase Equilibria Diffus. 30, 235 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Gegner, A.A. Vasilyev, P.J. Wilbrandt, M. Kaffenberger, Proc. 7th Int. Conf. Math. Model. Comput. Simul. Mater. Technol. 20, 22 (2012)Google Scholar
  29. 29.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26, 273 (2002)CrossRefGoogle Scholar
  30. 30.
    F.J. Harvey, Metall. Mater. Trans. A 9, 1507 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    S.W. Mayott, Analysis of the effects of reduced oxygen atmospheres on the decarburization depths of 300M alloy steel (New York, 2010). https://www.forging.org/uploaded/content/media/Modern_Look_at_Decarburization_Rensselaer_Phase1_2010.pdf
  32. 32.
    J. Andersson, J. Ågren, J. Appl. Phys. 72, 1350 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, Appl. Phys. A 124, 519 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    W. Pakieła, T. Tanski, M. Pawlyta, K. Pakieła, Z. Brytan, M. Sroka, Appl. Phys. A 124, 263 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    D.I. Pantelis, E. Bouyiouri, N. Kouloumbi, P. Vassiliou, A. Koutsomichalis, Surf. Coatings Technol. 161, 125 (2002)CrossRefGoogle Scholar
  36. 36.
    C.P. Ma, Y.C. Guan, W. Zhou, Opt. Lasers Eng. 93, 171 (2017)CrossRefGoogle Scholar
  37. 37.
    G. Telasang, J.D. Majumdar, G. Padmanabham, I. Manna, Surf. Coatings Technol. 261, 69 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Guarino, M. Barletta, A. Afilal, J. Manuf. Process. 28, 266 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Advanced Remanufacturing and Technology CentreSingaporeSingapore
  3. 3.Precision Laser Solutions Pte. LtdSingaporeSingapore

Personalised recommendations