Advertisement

FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2

  • 195 Accesses

  • 26 Citations

Abstract

In this work, six glass samples with nominal compositions (35Li2O–10ZnO–55B2O3) + (xSnO2: 0 ≤ x ≤ 3 wt%) have been prepared by solid state reaction method. Spectra of UV–visible absorption for these glasses have been performed in wavelength within the range 200–1100 nm. FTIR has been recorded in the range of 4000–400 cm−1 to estimate the vibrational modes in the samples. The direct and indirect optical energy band gap (\(E_{{\text{g}}}^{{{\text{ASF}}}}\)) and the corresponding refractive index (n) have been calculated by absorption spectrum fitting model. Molar refraction (Rm), polarizability (αm), reflection loss (RL), and optical transmission (T) for the glass samples have been evaluated. Moreover, the mass attenuation coefficients (µ/ρ) have been evaluated using the Monte Carlo code (MCNPX, version 2.6.0) in the energy range 0.356–1.33 MeV to understand the radiation shielding properties for the prepared glasses. From the µ/ρ values, we have calculated some other parameters such as effective atomic number (Zeff), the half value layer, and the mean free path for the present glass samples. The results revealed that the investigated glass samples are promising for the laser stimulated nonlinear optics and the composition with the highest value of SnO2 content (3.0 wt%) is encouraging candidate for nuclear radiation shielding.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate, glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23–28 (2013)

  2. 2.

    M. Jalali, A. Mohammadi, Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiat. Phys. Chem. 77, 523–527 (2008)

  3. 3.

    S. Ruengsri, Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Install. 2014 (2014) (Article ID 218041)

  4. 4.

    A. El-Sayed, M.A. Waly, M.A. Fusco, Bourham, Impact of specialty glass and concrete on gamma shielding in multi-layered PWR dry casks. Prog. Nucl. Energy 94, 64–70 (2017)

  5. 5.

    A. El-Sayed, M.A. Waly, M.A. Fusco, Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)

  6. 6.

    S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factor for heavy metal oxide glasses: a radiation shield. J. Korea Phys. Soc. 59, 2039–2042 (2011)

  7. 7.

    K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glass of Bi2O3, PbO and BaO containing: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438–1441 (2011)

  8. 8.

    K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bharri, H.S. Sahora, Gamma-ray attenuation coefficient in bismuth borate glass. J. Nucl. Instrum. Methods Phys. Res. B 194, 1–6 (2002)

  9. 9.

    J. Gallup, A. Dingwall, Properties of low-temperature solder glasses. J. Am. Ceram. Soc. Bull. 36, 47–51 (1957)

  10. 10.

    N. Shenkai, R.C. Bradt, G.E. Rindone, Elastic modulus and fracture toughness of ternary PbO–ZnO–B2O3 glasses. J. Am. Ceram. Soc. 65, 123–126 (1982)

  11. 11.

    M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54, 408–415 (2016)

  12. 12.

    P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364–376 (2016)

  13. 13.

    A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, A.A. El-Hamalawy, Structural, optical, and electrical characterization of borate glasses doped with SnO2. J. Non Cryst. Solids 494, 59–65 (2018)

  14. 14.

    M. Pal, B. Roy, M. Pal, Structural characterization of borate glasses containing zinc and manganese oxides. J. Mod. Phys. 2, 1062–1066 (2011)

  15. 15.

    C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 1–17 (2012) (Article ID 428497)

  16. 16.

    T.A. Taha, A.S. Abouhaswa, Preparation and optical properties of borate glass doped with MnO2. J. Mater. Sci. 29, 8100–8106 (2018)

  17. 17.

    N.F. Mott, E.A. Davies, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

  18. 18.

    J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 1974)

  19. 19.

    L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)

  20. 20.

    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2xSb2O3 glasses. J. Non-Cryst. Solids 355, 1597–1601 (2009)

  21. 21.

    H. Haydar Aboud, I. Wagiran, R. Hossain, S. Hussin, M. Saber, Aziz, Effect of co-doped SnO2 nanoparticles on the optical properties of Cu-doped lithium potassium borate glass. Mater. Lett. 85, 21–24 (2012)

  22. 22.

    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

  23. 23.

    R. El-Mallawany, M. Dirar Abdalla, I. Abbas Ahmed, New tellurite glasses, optical properties. Mater. Chem. Phys. 109, 291–296 (2008)

  24. 24.

    E.A. Moelwyn-Hughes, Physical Chemistry. Pergamon, London, 1961

  25. 25.

    R. El-Mallawany, Optical properties of tellurite glasses. J. App. Phys. 72, 1774–1777 (1992)

  26. 26.

    H. Rawson, Properties and Applications of Glass (Elsevier, Amsterdam, 1980)

  27. 27.

    M.N. Azlan, M.K. Halimah, S.Z. Shafinas, W.M. Daud, Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater. Express. 5, 211–218 (2015)

  28. 28.

    I.V. Kityk, A. Majchrowski, Second-order non-linear optical effects in BiB3O6 glass fibers. Opt. Mater. 26, 33–37 (2004)

  29. 29.

    Ashok, Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

  30. 30.

    RSICC Computer Code Collection, MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications (2002)

  31. 31.

    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, K. Zucker, D.S. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database (XGAM) (2010). http://www.nist.gov/pml/data/xcom/index.cfm

  32. 32.

    H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125 (2017)

  33. 33.

    O. Huseyin, M.I. Tekin, T. Sayyed, Manici, Elif Ebru Altunsoy, Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 211, 9–16 (2018)

  34. 34.

    V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015)

  35. 35.

    M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi. Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code. Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2018.04.106

  36. 36.

    Shamsan.S.Obaid,M.I.Sayyed,D.K.Gaikwad, P.P. Pawar. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

  37. 37.

    Murat, Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloy. Compd. 727, 1227–1236 (2017)

  38. 38.

    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy. Compd. 745, 355–364 (2018)

  39. 39.

    M.I. Sayyed, Çelikbilek A.E. Ersundu, G. Ersundu, P. Lakshminarayana, Kostka, Investigation of radiation shielding properties for MeO–PbCl2–TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018)

  40. 40.

    M.I. Sayyed, M.Y. AlZaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Res. Phys. 7, 2528–2533 (2017)

  41. 41.

    P.P. Pawar, K.G. Bichile, Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122–1.330 MeV. Radiat. Phys. Chem. 92, 22–27 (2013)

  42. 42.

    M. Papachristoforou, I. Papayianni, Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates. Radiat. Phys. Chem. 149, 26–32 (2018)

  43. 43.

    D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508–517 (2018)

  44. 44.

    D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017)

  45. 45.

    C.V. More, R.M. Lokhande, P.P. Pawar, Effective atomic number and electron density of amino acids within the energy range of 0.122–1.330 MeV. Radiat. Phys. Chem. 125, 14–20 (2016)

Download references

Author information

Correspondence to Y. S. Rammah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Sayyed, M.I., Abohaswa, A.S. et al. FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018) doi:10.1007/s00339-018-2069-4

Download citation