Applied Physics A

, 124:608 | Cite as

Structural, magnetic, and electrical properties of sol–gel derived cobalt ferrite nanoparticles

  • A. Hossain
  • M. S. I. SarkerEmail author
  • M. K. R. Khan
  • F. A. Khan
  • M. Kamruzzaman
  • M. M. Rahman


This work reports the synthesis and studies of semi-soft ferrimagnetic CoFe2O4 nanoparticles using sol–gel method. The X-ray diffraction patterns confirm the formation of cubic spinel CoFe2O4 nanoparticles. The average crystallite size was found from XRD data is about 30 nm. The high resolution transmission electron microscopy analysis shows that nanoparticles are highly crystalline. The magnetic properties reveal that the particles are ferrimagnetically ordered soft magnetic materials with coercive field of 620 Oe and saturation magnetization Ms = 60 emug− 1. The higher value of saturation magnetization is due to the ordered single-domains magnetic nanoparticles and lower magnitude of coercivity is attributed to the decrease of interparticle interactions and magneto-elastic anisotropy. The value of remanence ratio R < 0.5 is responsible for magnetostatic interactions of the particles. The nanoparticles possess low values of dielectric constant which decreased with increasing frequency. The low dielectric constant makes the nanoparticles as a promising candidate for high frequency magnetic devices.



The authors would like to acknowledge the Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China to provide the facility for measuring XRD, SEM and HRTEM measurements. This work was supported by the UGC grant no. A-843-5/52/UGC/Science-10/2015. The authors are thankful to the International Science Programs (ISP), Uppsala University, Sweden and Bangladesh University of Engineering and Technology (BUET) for technical support related to magnetic and electrical properties studies.


  1. 1.
    G.E. Fish, Proc. IEEE, 78, 947 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    T. Abraham, JOM, 16 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Spaldin, Magnetic Materials (Cambridge University Press, Cambridge, 2003)Google Scholar
  4. 4.
    P.C. Rajath, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigam, J. Alloys Compd. 453, 298 (2008)CrossRefGoogle Scholar
  5. 5.
    M.S. Khandekar, R.C. Kamble, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloys Compd. 509, 1861 (2011)CrossRefGoogle Scholar
  6. 6.
    N.M. Deraz, J. Anal. Appl. Pyrolysis 88, 103 (2010)CrossRefGoogle Scholar
  7. 7.
    G.H. Jonker, J. Phys. Chem. Solids 9, 165 (1959)ADSCrossRefGoogle Scholar
  8. 8.
    K.W. Wagner, Ann. Phys. 40, 317 (1973)Google Scholar
  9. 9.
    M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Ceram. Int. 40, 1147 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Laokul, S. Arthan, S. Maensiri, E. Swatsitang, J Supercond. Nov. Magn. 28, 2483 (2015)CrossRefGoogle Scholar
  11. 11.
    P.C. Morais, V.K. Garg, A.C. Oliveira, L.P. Silva, R.B. Azevedo, A.M.L. Silva, E.C.D. Lima, J. Magn. Magn. Mater. 225, 37 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    M. Amal, M.M. Ibrahim, M.M. Abd El-Latif, Mahmoud, J. Alloys Compd. 506, 201 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918)Google Scholar
  14. 14.
    Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zengand, L.S. Wen, J. Phys. D Appl. Phys. 43, 445003 (2010)CrossRefGoogle Scholar
  15. 15.
    Ch Turquat, Ch Leroux, A. Gloter, V. Serin, G. Nihoul, I. J. Inorg. Mater. 3, 1025 (2001)CrossRefGoogle Scholar
  16. 16.
    L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei, F. Cao, J. Solid State Chem. 181, 245 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Rana, J.J. Philip, B. Raj, Mater. Chem. Phys. 124, 264 (2010)CrossRefGoogle Scholar
  18. 18.
    K.K. Senapati, C. Borgohain, P. Phukan, J. Mol. Catal. A Chem. 339, 24 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Farhadi, J. Safabakhsh, P. Zaringhadam, J. Nanostructure Chem. 3, 69 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Gatelyte, D. Jasaitis, A. Beganskiene, A. Kareiva, Mater. Sci. 17, 3 (2011)Google Scholar
  21. 21.
    A.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, Ceramica 55, 420 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Zhang, O. Amponsah, M. Arslan, T. Holloway, W. Cao, A.K. Pradhan, J. Appl. Phys. 111, 07B525 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Y. Liu, C. Fei, Z. Yang, Z. Lu et al., J. Appl. Phys. 108, 084312 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    D.S. Mathew, R.S. Juang, Chem. Eng. J. 29, 51 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Gharagozlou, J. Alloys Compd. 486, 660 (2009)CrossRefGoogle Scholar
  27. 27.
    M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, M. Hashim, J. Nanomater. 2010 (2010) (article ID: 907686)Google Scholar
  28. 28.
    Z.L. Wang, Y. Liu, Z. Zhang, Materials Systems and Applications I, vol. III (Kluwer Academic, Boston, Mass, USA, 2003) (Plenum, New York)Google Scholar
  29. 29.
    E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. 240, 599 (1948)ADSCrossRefGoogle Scholar
  30. 30.
    M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, J. Magn. Magn. Mater. 268, 33 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Mater. Chem. Phys. 117, 163 (2009)CrossRefGoogle Scholar
  32. 32.
    M.C. Dimri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Mater. Sci. Eng. B 42, 133 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of RajshahiRajshahiBangladesh
  2. 2.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh
  3. 3.Department of PhysicsBegum Rokeya UniversityRangpurBangladesh

Personalised recommendations