Advertisement

Applied Physics A

, 124:596 | Cite as

Effect of Ag doping on the physical properties of tin-sulfide thin films for optoelectronic applications prepared by spray pyrolysis

  • M. R. Fadavieslam
Article
  • 15 Downloads

Abstract

Silver-doped tin-sulfide thin films were deposited on glass substrates at 400 °C through spray pyrolysis. Afterward, the effects of Ag doping on the structural, optical, and electrical properties of thin films were investigated. The precursor solution was prepared by dissolving tin chloride (SnCl4∙5H2O) and thiourea (CS(NH3)2) in deionized water and subsequently adding silver acetate (AgC2H3O2). SnS2:Ag thin film was prepared with \(\frac{{\left[ {{\text{Ag}}} \right]}}{{\left[ {{\text{Sn}}} \right]}}\) % of 1, 2, and 3 at.%. X-ray diffraction analysis showed that the thin film exhibited a preferred (001) orientation in the SnS2 phase, and the intensity of the (001) peak increased with increased Ag-doping concentration. In addition, scanning electron microscopy indicated that the thin films presented spherical grains. Increased doping concentration also resulted in a decrease in the single-crystal grain size from 14–6 nm, with an average grain size of 80–123 nm. Moreover, the optical bandgap decreased from 2.75 to 2.56 eV, and the carrier concentration decreased from 95.48 × 1015 cm−3 to 2.48 × 1015 cm−3. On the contrary, the Hall mobility increased from 59.725 to 183.28 cm2/v s. The electrical resistance also increased from 1.096 to 13.75 Ω cm. Hall effect studies revealed that the films exhibited n-type conductivity.

References

  1. 1.
    K. Santhosh Kumar, A. GowriManohari, S. Dhanapandian, T. Mahalingam, Mater. Lett. 131, 167 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. GowriManohari, T. Mahalingam, Optik 125, 3996 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A. Amit Jakhar, A. Jamdagni, T. Bakshi, V. Verma, P. Shukla, N. Jain, P.A. Sinha, Solid State Commun. 168, 31 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    R. Mariappan, T. Mahalingam, V. Ponnuswamy, Optik 122, 2216 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Punarja Kevin, J. Lewis, M. Raftery, A. Malik, P. O’Brien, J. Cryst. Growth 415, 93 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Shevtsova, P.P. Gladyshev, Thin Solid Films 585, 40 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    B. Ghosh, R. Bhattacharjee, P. Banerjee, S Das, Appl. Surf. Sci. 257, 3670 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V. Robles, J.F. Trigo, C. Guillen, J. Herrero, Mater. Chem. Phys. 167, 165 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Koteeswara Reddy, M. Devika, Y.-B. Hahn, K.R. Gunasekhar, Appl. Surf. Sci. 268, 317 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 840 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Patel, I. Mukhopadhyay, A. Ray, Opt. Mater. 35, 1693 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A.E. Abdelrahman, W.M.M. Yunus, A.K. Arof, J. Non-Cryst. Solids 358, 1447 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.G. Sousa, A.F. da Cunha, P.A. Fernandes, J. Alloy. Compd. 592, 80 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, T. Buonassisi, Thin Solid Films 519, 7421 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M.M. Bagheri-Mohagheghi, Phys. Scr. 84, 035705 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M.M. Bagheri-Mohagheghi, J. Semiconduct 32, 113002 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    T.H. Sajeesh, K.B. Jinesh, C. Sudha Kartha, K.P. Vijayakumar, Appl. Surf. Sci. 258, 6870 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    H. Martinez, D. Avellaneda, Nucl Instrum Methods Phys. Res. B 272, 351 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A.R. Garcia-Angelmo, M.T.S. Nair, P.K. Nair, Solid State Sci. 30, 26 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Appl. Surf. Sci. 254, 6436 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    J.Y. Kim, S.M. George, J. Phys. Chem. C 114, 17597 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1, 1116 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Tanuševski, D. Poelman, Sol. Energy Mater. Sol. Cells 80, 297 (2003)CrossRefGoogle Scholar
  24. 24.
    M.R. Fadavieslam, J. Mater. Sci. Mater. Electron. 28, 2392 (2017)CrossRefGoogle Scholar
  25. 25.
    M.R. Fadavieslam, A. Kazemi, J. Mater. Sci. Mater. Electron. 28, 3970 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Turgut, E. Sonmez, Superlattices Microstruct. 69, 175 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J. Hong-Jie, C. Shu-Ying, W. Xin-Kun, Y. Yong-Li, Nat. Sci. 2, 197 (2010)Google Scholar
  28. 28.
    Y. Yongli, C. Shuying, L. Songlin, Adv. Mater. Res. 60, 105 (2009)Google Scholar
  29. 29.
    M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, J. Electrochem. Soc. 153, 727 (2006)CrossRefGoogle Scholar
  30. 30.
    Z. Seboui, Y. Cuminal, N. Kamoun-Turki, J. Renew. Sustain. Energy 5, 023113 (2013)CrossRefGoogle Scholar
  31. 31.
    G.I. Rusu, M.E. Popa, G.G. Rusu, I. Salaoru, J. Appl. Surf. Sci. 218, 222 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    N. Koteeswara Reddy, K.T. Ramakrishna Reddy, J. Physica B 368, 25 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Gedi, V.R.M. Reddy, B. Pejjai, C. Park, C.-W. Jeona, K.T. Ramakrishna Reddy, J. Ceram. Int. 43, 3713 (2017)CrossRefGoogle Scholar
  34. 34.
    M.N. Amroun, M. Khadraoui, R. Miloua, Z. Kebbab, K. Sahraoui, Int. J. Light Electron Opt. 131, 152 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsDamghan UniversityDamghanIran

Personalised recommendations