Skip to main content
Log in

One-step hydrothermal synthesis of visible-light-driven In2.77S4/SrCO3 heterojunction with efficient photocatalytic activity for degradation of methyl orange and tetracycline

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The In2.77S4/SrCO3 heterojunction photocatalyst had been prepared by one-step hydrothermal method. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectrometry, UV–Vis diffuse reflectance spectroscopy and electrochemical impedance spectroscopy were used to analyze the structure, morphology, chemical compositions, optical properties and charge carrier behaviors of the as-prepared In2.77S4/SrCO3 hybrids, respectively. Experimental results revealed the SrCO3 could obviously improve the recyclability and photocatalytic activities of In2.77S4 nanosheets for both methyl orange and tetracycline oxidation under visible light. The photocatalytic degradation efficiency of the as-obtained In2.77S4/SrCO3 hybrids was first increased and then decreased with increasing the molar ratio of Sr(NO3)2 to In(NO3)3·4.5H2O. When it was 0.4:1, that of the as-prepared hybrids with the band gap of 1.63 eV reached the maximum of 96.0% in 30 min for methyl orange and 82.7% in 20 min for tetracycline. These were higher than 88.0% and 40.0% of In2.77S4 nanosheets as well as 0.8 and 1.8% of SrCO3 particles, respectively. After three cycles, its photocatalytic efficiency still possessed 92.7% for methyl orange and 80.3% for tetracycline, which were much higher than 35.3% and 11.3% of In2.77S4 nanosheets. Moreover, the possible photocatalytic degradation mechanism of the In2.77S4/SrCO3 hybrids was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.L. Hu, Z.J. Wei, Q. Chang, A. Trinchi, J. Yang, Appl. Surf. Sci. 378, 402 (2016)

    Article  ADS  Google Scholar 

  2. X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, J.C. Pan, Y. Zhang, L.S. Sun, W.G. Zhang, G.W. Sun, J. Nanopart. Res. (2018). https://doi.org/10.1007/s11051-018-4257-8

    Article  ADS  Google Scholar 

  3. L.X. Jiang, J.Y. Chen, Y. Wang, K.L. Sun, F.Y. Liu, Y.Q. Lai, Mater. Lett. 224, 109 (2018)

    Article  Google Scholar 

  4. X.L. Liu, Q. Liu, P. Wang, Y.Z. Liu, B.B. Huang, E.A. Rozhkova, Q.Q. Zhang, Z.Y. Wang, Y. Dai, J. Lu, Chem. Eng. J. 337, 480 (2018)

    Article  Google Scholar 

  5. X.L. Liu, P. Wang, H.S. Zhai, Q.Q. Zhang, B.B. Huang, Z.Y. Wang, Y.Y. Liu, Y. Dai, X.Y. Qin, X.Y. Zhang, Appl. Catal. B-Environ. 232, 521 (2018)

    Article  Google Scholar 

  6. Z.F. Liu, J. Zhang, W.G. Yan, ACS Sustain. Chem. Eng. 6, 3565 (2018)

    Article  Google Scholar 

  7. H.L. Jiang, M.L. Li, J. Liu, X.Q. Li, L. Tian, P.H. Chen, Ceram. Int. 44, 2709 (2018)

    Article  Google Scholar 

  8. X.Z. Liang, P. Wang, M.M. Li, Q.Q. Zhang, Z.Y. Wang, Y. Dai, X.Y. Zhang, Y.Y. Liu, M.H. Whangbo, B.B. Huang, Appl. Catal. B-Environ. 220, 356 (2018)

    Article  Google Scholar 

  9. J.B. Ni, J. Gao, X.Y. Geng, D.D. He, X.N. Guo, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-0824-6

    Article  Google Scholar 

  10. Y.R. Zhang, Q. Li, Solid State Sci. 16, 16 (2013)

    Article  ADS  Google Scholar 

  11. E. Vasilaki, D. Vernardou, G. Kenanakis, M. Vamvakaki, N. Katsarakis, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-0837-1

    Article  Google Scholar 

  12. M.M. Momeni, Y. Ghayeb, Ceram. Int. 42, 7014 (2016)

    Article  Google Scholar 

  13. C. Wang, H. Fan, X. Ren, J. Fang, Appl. Phys. A-Mater. (2018). https://doi.org/10.1007/s00339-017-1543-8

    Article  Google Scholar 

  14. M. Sangareswari, M.M. Sundaram, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-0969-3

    Article  Google Scholar 

  15. N. Liang, Q.Q. He, S.S. Huang, M. Wang, W.L. Chen, M. Xu, Y.P. Yuan, J.T. Zai, N.H. Fang, X.F. Qian, Cryst. Eng. Comm 16, 10123 (2014)

    Article  Google Scholar 

  16. W.L. Yang, L. Zhang, J.F. Xie, X.D. Zhang, Q.H. Liu, T. Yao, S.Q. Wei, Q. Zhang, Y. Xie, Angew. Chem. Int. Edit. 55, 6716 (2016)

    Article  Google Scholar 

  17. N. Liang, J.T. Zai, M. Xu, Q. Zhu, X. Wei, X.F. Qian, J. Mater. Chem. A 2, 4208 (2014)

    Article  Google Scholar 

  18. X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloy. Compd. 740, 1197 (2018)

    Article  Google Scholar 

  19. Y. Zhang, J. Gu, M. Murugananthan, Y.R. Zhang, J. Alloy. Compd. 630, 110 (2015)

    Article  Google Scholar 

  20. W.J. Li, Z.Y. Lin, G.W. Yang, Nanoscale 9, 18290 (2017)

    Article  Google Scholar 

  21. X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, X.D. Gong, Y.D. Wang, Y. Liu, X.Y. Yang, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-1016-0

    Article  Google Scholar 

  22. X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, J.Z. Su, J.R. Zhang, F.F. Yang, Y. Zhang, J.C. Pan, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-1286-6

    Article  Google Scholar 

  23. L.Q. Shao, J. Li, X.M. Liang, T. Xie, S.C. Meng, D.L. Jiang, M. Chen, RSC Adv. 6, 18227 (2016)

    Article  Google Scholar 

  24. J.W. Lee, Y.H. Kim, J.K. Kim, S.C. Kim, D.H. Min, D.J. Jang, Appl. Catal. B-Environ. 205, 433 (2017)

    Article  Google Scholar 

  25. H.S. Zhai, T.J. Yan, P. Wang, Y. Yu, W.J. Li, J.M. You, B.B. Huang, Appl. Catal. A-Gen. 528, 104 (2016)

    Article  Google Scholar 

  26. H. Xu, Z. Wu, M.M. Ding, X.H. Gao, Mater. Design 114, 129 (2016)

    Article  Google Scholar 

  27. W. Zhang, L. Zhou, J. Shi, H. Deng, J. Colloid. Interf. Sci. 496, 167 (2017)

    Article  ADS  Google Scholar 

  28. J. He, D.W. Shao, L.C. Zheng, L.J. Zheng, D.Q. Feng, J.P. Xu, X.H. Zhang, W.C. Wang, W.H. Wang, F. Lu, H. Dong, Y.H. Cheng, H. Liu, R.K. Zheng, Appl. Catal. B-Environ. 203, 917 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51778378) and Natural Science Foundation of Tianjin (No. 15JCYBJC28600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Feng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XF., Li, H., Sun, LS. et al. One-step hydrothermal synthesis of visible-light-driven In2.77S4/SrCO3 heterojunction with efficient photocatalytic activity for degradation of methyl orange and tetracycline. Appl. Phys. A 124, 584 (2018). https://doi.org/10.1007/s00339-018-2012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2012-8

Navigation