Applied Physics A

, 124:729 | Cite as

High-field electrostatic control of ferromagnetic resonance in NiFe/PIN-PMN-PT multiferroic heterostructures

  • Yujia E
  • Lei Ji
  • Kang Liu
  • Zhijun Lv
  • Jun Li
  • Xiaoou Wang
  • Bing Dai


We report electric-field control of ferromagnetic resonance in NiFe film, which was deposited on (011)-cut 0.3Pb(In1/2Nb1/2)O3-0.4Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PIN-PMN-PT) single crystals. An upward frequency shift from 11.69 to 12.53 GHz is achieved in our heterostructures for electric field from 0 to 15 kV/cm as an external magnetic field of 2090 Oe was applied along in-plane [100] direction, and a downward shift from 13.61 to 13.25 GHz is investigated for electric field from 0 to 7 kV/cm, while an external magnetic field of 2723 Oe was applied along [01\(\stackrel{-}{1}\)] direction. The large operational electric field and the high rhombohedral-tetragonal phase transition temperature TR−T (~ 127 °C) of the crystal make NiFe/PIN-PMN-PT composites great candidates for electrically tunable microwave magnetic device applications with broad electric field and temperature range.


  1. 1.
    H. Schmid, Multi-ferroic magnetoelectrics[J]. Ferroelectrics 162(1), 317–338 (1994)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials[J]. Nature 442, 759–765 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    D.N. Astrov, The magnetoelectric effect in antiferromagnetics[J]. Sov. Phys. JETP 11(3), 708–709 (1960)Google Scholar
  4. 4.
    G. Lawes, G. Srinivasan, Introduction to magnetoelectric coupling and multiferroic films[J]. J. Phys. D Appl. Phys. 44(24), 243001 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wei, C. Gao, Z. Chen et al., Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure:[J]. Sci. Rep. 6, 30002 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Liu, N.X. Sun, Voltage control of magnetism in multiferroic heterostructures.[J]. Philos. Trans. R. Soc. Lond. 372(2009), 20120439 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12-xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)CrossRefGoogle Scholar
  9. 9.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3 + and Ga3 +; x = 0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    C. Zhang, F. Wang, C. Dong et al., Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface[J]. Nanoscale 7(9), 4187–4192 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ba, Y. Sun, W. Wang et al. Electric-field modulation of interface magnetic anisotropy and spin reorientation in (Co/Pt)3/ PMN-PT heterostructure[C]// APS Meeting. APS Meeting Abstracts, 2017Google Scholar
  13. 13.
    Y.T. Yang, J. Li, X.L. Peng et al., Electrical modulation of magnetism in multiferroic heterostructures at room temperature[J]. J. Mater. Sci. 52(6), 3330–3336 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhang, Q. Chen, L. Yan et al. Strain-mediated coexistence of volatile and nonvolatile converse magnetoelectric effects in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure[J]. Acs Appl. Mater. Interfaces 2017, 9(24):20637CrossRefGoogle Scholar
  15. 15.
    W. Zhou, C. Ma, Z. Gan et al., Manipulation of anisotropic magnetoresistance and domain configuration in Co/PMN-PT (011) multiferroic heterostructures by electric field[J]. Appl. Phys. Lett. 111(5), 052401 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Hu, T. Nan, X. Wang et al., Voltage control of magnetism in FeGaB/PIN-PMN-PT multiferroic heterostructures for high-power and high-temperature applications[J]. Appl. Phys. Lett. 106(2), 759–2049 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Liu, Z. Zhou, T. Nan et al., Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites[J]. Adv. Mater. 25(10), 1435–1439 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Liu, O. Obi, Z. Cai et al., Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering[J]. J. Appl. Phys. 107(7), 256 (2010)Google Scholar
  19. 19.
    M. Liu, O. Obi, J. Lou et al., Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures[J]. Adv. Funct. Mater. 19(11), 1826–1831 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Liu, O. Obi, J. Lou et al., Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition[J]. J. Phys. D Appl. Phys. 42(4), 045007 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Nan, Z. Zhou, M. Liu et al., Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface[J]. Sci. Rep. 4(4), 3688 (2014)Google Scholar
  22. 22.
    H. Su, X. Tang, Y. Gao et al., Electric-field tuning of non-volatile magnetization modulation in NiZn ferrite/PZT multiferroic heterostructure[J]. J. Alloys Compd. 695, 3722–3726 (2017)CrossRefGoogle Scholar
  23. 23.
    N.N. Phuoc, C.K. Ong, Control of ferromagnetic resonance frequency and frequency linewidth by electrical fields in FeCo/0.68Pb(Mg1/3Nb2/3)O3-0.32 PbTiO3(011) heterostructures[J]. J. Electron. Mater. 45(10), 1–7 (2016)CrossRefGoogle Scholar
  24. 24.
    E. Sun, Zhang, Shujun, Luo, Jun. Elastic, dielectric, and piezoelectric constants of Pb (In 1/2 Nb 1/2) O 3 – Pb (Mg 1/3 Nb 2/3) O 3 – PbTiO 3, single crystal poled along [011] c[J]. Appl. Phys. Lett. 97(3), 407 (2010)Google Scholar
  25. 25.
    S. Zhang, J. Luo, W. Hackenberger et al., Characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystal with enhanced phase transition temperatures[J]. J. Appl. Phys. 104(6), 64106 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Hosono, Y. Yamashita, H. Sakamoto et al., Growth of single crystals of high-curie-temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary systems near morphotropic phase boundary[J]. Jpn. J. Appl. Phys. 42(9A), 5681–5686 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yujia E
    • 1
  • Lei Ji
    • 1
  • Kang Liu
    • 1
  • Zhijun Lv
    • 1
  • Jun Li
    • 1
  • Xiaoou Wang
    • 1
  • Bing Dai
    • 1
  1. 1.Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations