Advertisement

Applied Physics A

, 124:547 | Cite as

Vertical organic field effect transistor: on–off state definition related to ambipolar gate biasing

  • Keli F. Seidel
  • Lucieli Rossi
  • Diana Jastrombek
  • Hypolito J. Kalinowski
Article
  • 102 Downloads

Abstract

We investigated a vertical organic field effect transistor (VOFET) behavior with an intermediate electrode formed by a tin (Sn) layer, whose growth presents a self-organized pattern grid with natural pores, fundamental to its operation. The choose of the materials to compose the channel formed by a fullerene (\(\text {C}_{60}\)) and a intermediate electrode of Sn brings a structure able to work with very low voltage and ambipolar gate biasing behavior, concomitantly. A explanation based on the importance of the roughness/pores in the intermediate electrode and the control of the energy barrier of the injection interface clarifies how to obtain the on–off state in unipolar VOFETs with ambipolar gate biasing. A theoretical basis support that when there is a low injection energy barrier inside and outside of the pores from a roughness intermediate electrode the electrical characterization its a combination of a very low voltage operation with a non negligible off-output current.

Notes

Acknowledgements

The authors would like to thank CNPq and CAPES for financial support, Prof. Ivo. A. Hümmelgen (Universidade Federal do Parana) by the device development facilities and Center for Electronic Microscopy (CME-UFPR) by AFM facilities. We would like to thanks also Prof. Emil J.W. List-Kratochvil (Humboldt-Universität zu Berlin) for fruitful discussions and valuable suggestions.

References

  1. 1.
    L. Ma, Y. Yang, Unique architecture and concept for high-performance organic transistors. Appl. Phys. Lett. 85(21), 5084 (2004).  https://doi.org/10.1063/1.1821629 ADSCrossRefGoogle Scholar
  2. 2.
    L. Rossi, K.F. Seidel, W.S. Machado, I.A. Hümmelgen, Low voltage vertical organic field-effect transistor with polyvinyl alcohol as gate insulator. J. Appl. Phys. 110(9), 094508 (2011).  https://doi.org/10.1063/1.3660406 ADSCrossRefGoogle Scholar
  3. 3.
    K.F. Seidel, L. Rossi, R.M.Q. Mello, I.A. Hümmelgen, Vertical organic field effect transistor using sulfonated polyaniline/aluminum bilayer as intermediate electrode. J. Mater. Sci. Mater. Electron. 24(3), 1052 (2013).  https://doi.org/10.1007/s10854-012-0876-5 CrossRefGoogle Scholar
  4. 4.
    L.G. Albano, M.H. Boratto, O. Nunes-Neto, C.F. Graeff, Low voltage and high frequency vertical organic field effect transistor based on rod-coating silver nanowires grid electrode. Org. Electron. 50(Supplement C), 311 (2017).  https://doi.org/10.1016/j.orgel.2017.08.011 CrossRefGoogle Scholar
  5. 5.
    A. Kvitschal, I. Cruz-Cruz, I.A. Hümmelgen, Copper phthalocyanine based vertical organic field effect transistor with naturally patterned tin intermediate grid electrode. Org. Electron. 27, 155 (2015).  https://doi.org/10.1016/j.orgel.2015.09.010 CrossRefGoogle Scholar
  6. 6.
    J.S. Kim, B.J. Kim, Y.J. Choi, M.H. Lee, M.S. Kang, J.H. Cho, An organic vertical field-effect transistor with underside-doped graphene electrodes. Adv. Mater. 28(24), 4803–4810 (2016).  https://doi.org/10.1002/adma.201505378 CrossRefGoogle Scholar
  7. 7.
    T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Yong-JinKim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, Andre K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene ws\(_{2}\) heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).  https://doi.org/10.1038/nnano.2012.224 ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yang, A.J. Heeger, A new architecture for polymer transistors. Nature 372, 344 (1994).  https://doi.org/10.1038/372344a0 ADSCrossRefGoogle Scholar
  9. 9.
    B. Liu, M.A. McCarthy, Y. Yoon, D.Y. Kim, Z. Wu, F. So, P.H. Holloway, J.R. Reynolds, J. Guo, A.G. Rinzler, Carbon-nanotube-enabled vertical field effect and light-emitting transistors. Adv. Mater. 20(19), 3605–3609 (2008).  https://doi.org/10.1002/adma.200800601 CrossRefGoogle Scholar
  10. 10.
    L. Rossi, Transistores orgânicos de efeito de campo em arquitetura vertical, thesis, Universidade Federal do paraná - UFPR, Departamento de Física (2013). http://acervodigital.ufpr.br/handle/1884/30069
  11. 11.
    M.Z. Mohd Halizan, N.A. Roslan, S.M. Abdullah, N. Abdul Halim, T.S. Velayutham, K.L. Woon, A. Supangat, Improving the operational voltage of vertical organic field effect transistor (vofet) by altering the morphology of dielectric layer. J. Mater. Sci. Mater. Electron. 28(16), 11961 (2017).  https://doi.org/10.1007/s10854-017-7005-4 CrossRefGoogle Scholar
  12. 12.
    H. Yu, Z. Dong, J. Guo, D. Kim, F. So, Vertical organic field-effect transistors for integrated optoelectronic applications. ACS Appl. Mater. Interfaces 8(16), 10430 (2016).  https://doi.org/10.1021/acsami.6b00182. PMID: 27082815CrossRefGoogle Scholar
  13. 13.
    A.J. Ben-Sasson, N. Tessler, Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110(4), 044501 (2011).  https://doi.org/10.1063/1.3622291 ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Ben-Sasson, Vertical organic field effect transistors realized by block copolymers self assembly, Thesis (2013)Google Scholar
  15. 15.
    M. Greenman, G. Sheleg, C. min Keum, J. Zucker, B. Lussem, N. Tessler, Reaching saturation in patterned source vertical organic field effect transistors. J. Appl. Phys. 121(20), 204503 (2017).  https://doi.org/10.1063/1.4984053 ADSCrossRefGoogle Scholar
  16. 16.
    B. Lssem, A. Gnther, A. Fischer, D. Kasemann, K. Leo, Vertical organic transistors. J. Phys. Condens. Matter 27(44), 443003 (2015). http://stacks.iop.org/0953-8984/27/i=44/a=443003
  17. 17.
    W.S. Machado, I.A. Hummelgen, Low-voltage poly(3-hexylthiophene)/poly(vinyl alcohol) field-effect transistor and inverter. IEEE Trans. Electron Devices 59(5), 1529 (2012).  https://doi.org/10.1109/TED.2012.2187904 ADSCrossRefGoogle Scholar
  18. 18.
    P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings. Prog. Mater. Sci. 51(8), 1032–1114 (2006).  https://doi.org/10.1016/j.pmatsci.2006.02.002 CrossRefGoogle Scholar
  19. 19.
    Y.S. Chung, A. Hubenko, L. Meyering, M. Schade, J. Zimmer, T. Remmel, Morphology and phase of tin oxide thin films during their growth from the metallic tin. J. Vac. Sci. Technol. A 15(3), 1108–1112 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    S.D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, K. Tsukagoshi, Correlation between grain size and device parameters in pentacene thin film transistors. Appl. Phys. Lett. 93(4), 043311 (2008).  https://doi.org/10.1063/1.2967193 ADSCrossRefGoogle Scholar
  21. 21.
    A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95(21), 213301 (2009).  https://doi.org/10.1063/1.3266855 ADSCrossRefGoogle Scholar
  22. 22.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  23. 23.
    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, A universal method to produce low–work function electrodes for organic electronics. Science 336(6079), 327 (2012).  https://doi.org/10.1126/science.1218829. http://science.sciencemag.org/content/336/6079/327
  24. 24.
    D. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 1995)Google Scholar
  25. 25.
    C.M. Keum, I.H. Lee, S.H. Lee, G.J. Lee, M.H. Kim, S.D. Lee, Quasi-surface emission in vertical organic light-emitting transistors with network electrode. Opt. Express 22(12), 14750 (2014).  https://doi.org/10.1364/OE.22.014750. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-12-14750
  26. 26.
    M. Koehler, K.F. Seidel, Transition from bulk transport to surface transport in organic field effect transistors. Phys. Rev. B 81, 085305 (2010).  https://doi.org/10.1103/PhysRevB.81.085305 ADSCrossRefGoogle Scholar
  27. 27.
    M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada, K. Saiki, Accumulation and depletion layer thicknesses in organic field effect transistors, Japanese Journal of Applied Physics 42(12A), L1408 (2003). http://stacks.iop.org/1347-4065/42/i=12A/a=L1408
  28. 28.
    J.M. Montero, J. Bisquert, G. Garcia-Belmonte, E.M. Barea, H.J. Bolink, Trap-limited mobility in space-charge limited current in organic layers. Org. Electron. 10(2), 305 (2009).  https://doi.org/10.1016/j.orgel.2008.11.017 CrossRefGoogle Scholar
  29. 29.
    A.V. Sachenko, A.E. Belyaev, R.V. Konakova, On the ohmicity of schottky contacts. Semiconductors 50(6), 761 (2016).  https://doi.org/10.1134/S106378261606021X ADSCrossRefGoogle Scholar
  30. 30.
    C. Keum, I. Lee, S. Lee, G. Lee, M. Kim, S. Lee, Quasi-surface emission in vertical organic lightemitting transistors with network electrode. Opt. Express 22(12), 14750 (2014).  https://doi.org/10.1364/OE.22.014750 ADSCrossRefGoogle Scholar
  31. 31.
    M.A. McCarthy, B. Liu, E.P. Donoghue, I. Kravchenko, D.Y. Kim, F. So, A.G. Rinzler, Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570 (2011).  https://doi.org/10.1126/science.1203052. http://science.sciencemag.org/content/332/6029/570

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsFederal University of Technology, ParanáCuritibaBrazil
  2. 2.Department of Forestry Engineering and TechnologyFederal University of ParanáCuritibaBrazil
  3. 3.Graduate School on Electrical Engineering and Computer ScienceFederal University of Technology, ParanáCuritibaBrazil
  4. 4.Departamento de Engenharia de TelecomunicaçõesUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations