Advertisement

Applied Physics A

, 124:528 | Cite as

Field emission properties of indium-decorated vertically aligned carbon nanotubes: an interplay between type of hybridization, density of states and metal thickness

  • M. Sreekanth
  • S. Ghosh
  • S. R. Barman
  • P. Sadhukhan
  • P. Srivastava
Article
  • 68 Downloads

Abstract

Field emission (FE) properties of indium-decorated vertically aligned multi-walled carbon nanotube (MWCNT) films are investigated. The superior FE properties are achieved for 4-nm-thick indium-coated MWCNTs as compared to those coated with higher thicknesses of indium and pristine CNTs. Optimization in the FE properties is primarily attributed to transformation of sp2- to sp3-hybridized carbons and indium thickness. Other factors important for the better FE properties are enhanced density of states near the Fermi level and slightly improved field enhancement factor at relatively low applied electric fields.

Notes

Acknowledgements

The financial assistantship from CSIR, FIST (Raman facilities), NRF, and IIT Delhi is greatly acknowledged.

References

  1. 1.
    R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rinzler, J. Hafner, P. Nikolaev, L. Lou, S. Kim, D. Tomanek et al., Unravelling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    J.V. Veetil, K. Ye, Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 25, 709–721 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, D. Shaw, X. Bai, E. Wang, C. Lund, W. Lu et al., Hydrogen storage in aligned carbon nanotubes. Appl. Phys. Lett. 78, 2128–2130 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    L. Valentini, I. Armentano, J. Kenny, C. Cantalini, L. Lozzi, S. Santucci, Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82, 961–963 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio et al., Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    T. De los Arcos, F. Vonau, M. Garnier, V. Thommen, H.G. Boyen, P. Oelhafen et al., Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl. Phys. Lett. 80, 2383–2385 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Srividya, S. Gautam, P. Jha, P. Kumar, A. Kumar, U.S. Ojha et al.,, Titanium buffer layer for improved field emission of CNT based cold cathode. Appl. Surf. Sci. 256, 3563–3566 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Mao, L.F. Sun, L.X. Qian, Z.W. Pan, B.H. Pan, B.H. Chang et al., Growth of carbon nanotubes on cobalt disilicide precipitates by chemical vapor deposition. Appl. Phys. Lett. 72, 3297–3299 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Silan, D.L. Niemann, B.P. Ribaya, M. Rahman, M. Meyyappan, C.V. Nguyen, Carbon nanotube pillar arrays for achieving high emission current densities. Appl. Phys. Lett. 95, 133111–133114 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kumari, S. Gautam, P.V. Shah, S. Pal, U.S. Ojha, A. Kumar et al., Improving the field emission of carbon nanotubes by lanthanum-hexaboride nano-particles decoration. Appl. Phys. Lett. 101, 123113–123116 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A. Wadhawan, R. Stallcup, J. Perez, Effects of Cs deposition on the field-emission properties of single-walled carbon-nanotube bundles. Appl. Phys. Lett. 78, 108–110 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee et al., Field emission characteristics from wide-bandgap material-coated carbon nanotubes. Adv. Mater. 14, 1464–1468 (2002)CrossRefGoogle Scholar
  14. 14.
    F. Jin, Y. Liu, C. Day, S. Little, Enhanced electron emission from functionalized carbon nanotubes with a barium strontium oxide coating produced by magnetron sputtering. Carbon 45, 587–593 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Pandey, A. Prasad, J. Moscatello, M. Engelhard, C. Wang, Y. Yap, Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 7, 117–125 (2013)CrossRefGoogle Scholar
  16. 16.
    Z. Wang, Y. Zuo, Y. Li, X. Han, X. Guo, J. Wang et al., Improved field emission properties of carbon nanotubes decorated with Ta layer. Carbon 73, 114–124 (2014)CrossRefGoogle Scholar
  17. 17.
    C. Liu, K.S. Kim, J. Baek, Y. Cho, S. Han, S.-W. Kim et al., Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles. Carbon 47, 1158–1164 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Jung, S. Jo, H. Moon, J. Kim, D.-S. Zang, C. Lee, Improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties. J. Phys. Chem. C 111, 4175–4179 (2007)CrossRefGoogle Scholar
  19. 19.
    Y. Zhu, F. Cheong, T. Yu, X. Xu, C. Lim, J. Thong et al., Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films. Carbon 43, 395–400 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Lee, Y. Jung, J. Song, J. Kim, G.-W. Lee, H. Jeong et al., High-performance field emission from a carbon nanotube carpet. Carbon 50, 3889–3896 (2012)CrossRefGoogle Scholar
  21. 21.
    R.B. Rakhi, K. Sethupathi, S. Ramaprabhu, Electron field emitters based on multi-walled carbon nanotubes coated with conducting polymer/metal/metal-oxide composites. J. Exp. Nanosci. 4, 67–76 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. Wang et al., High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Appl. Phys. Lett. 97, 113107–113109 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    B.K. Gupta, G. Kedawat, A.K. Gangwar, K. Nagpal, P.K. Kashyap et al., High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures. AIP Adv. 8, 015117 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wua, J. Li, J. Ye, Y. Song, X. Chen, S. Huang, Z. Sun, W. Ou-Yang, Outstanding field emission properties of titanium dioxide/carbon nanotube composite cathodes on 3D nickel foam. J. Alloys Compd. 726, 675–679 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.M. Cho, C.W. Kim, H.S. Moon, H.M. Choi, S.H. Park, C.K. Lee et al., Electronic structure tailoring and selective adsorption mechanism of metal-coated nanotubes. Nano Lett. 8, 81–86 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Zhang, C.R. Yang, Y.J. Wang, T. Feng, W.D. Yu, J. Jiang et al., Improvement of the field emission of carbon nanotubes by hafnium coating and annealing. Nanotechnology 17, 257–260 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S.M. Lyth, R.A. Hatton, S.R.P. Silva, Efficient field emission from Li-salt functionalized multiwall carbon nanotubes on flexible substrates. Appl. Phys. Lett. 90, 013120 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    H. Sharma, V. Kaushik, P. Girdhar, V.N. Singh, A.K. Shukla, V.D. Vankar, Enhanced electron emission from titanium coated multiwalled carbon nanotubes. Thin Solid Films 518, 6915–6920 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Lee, W. Lee, K. Sim, S.-H. Han, W. Yi, Improved field emission properties from polycrystalline indium oxide-coated single-walled carbon nanotubes. J. Vac. Sci. Technol. B 26, 1892–1895 (2008)CrossRefGoogle Scholar
  30. 30.
    J.W. Lee, T. Park, J. Lee, S. Lee, H. Park, W. Yi, Electric field enhancements in In2O3-coated single-walled carbon nanotubes. Carbon 76, 378–385 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Sreekanth, S. Ghosh, P. Biswas, S. Kumar, P. Srivastava, Improved field emission from indium decorated multi-walled carbon nanotubes. Appl. Surf. Sci. 383, 84–89 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Sreekanth, S. Ghosh, P. Srivastava, Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles. Appl. Phys. A 124, 1–9 (2018)Google Scholar
  33. 33.
    M. Sreekanth, S. Ghosh, R. Patra, P. Srivastava, Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate. AIP Adv. 5, 067173 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    R. Seelaboyina, S. Boddepalli, K. Noh, M. Jeon, W. Choi, Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 19, 065601–065605 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    V. Datsyuka, M. Kalyvaa, K. Papagelisb, J. Partheniosa, D. Tasisb, A. Siokoua et al., Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833–840 (2008)CrossRefGoogle Scholar
  36. 36.
    I. Tanaka, M. Mizuno, H. Adachi, Electronic structure of indium oxide using cluster calculations. Phys. Rev. B 56, 3536–3539 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    S.C. Lim, C.S. Jo, H.J. Jeong, Y.M. Shin, Y.H. Lee, I.A. Samayoa et al., Effect of oxidation on electronic and geometric properties of carbon nanotubes. Jpn. J. Appl. Phys. 41, 5635–5639 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    G.K. Maira, B.R. Orton, J.C. Riviere, An XPS study of indium through the melting point. J. Phys. F Met. Phys. 17, 1999–2006 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanostech Laboratory, Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations