Advertisement

Applied Physics A

, 124:533 | Cite as

Processing, dielectric and electrical characteristics of strontium-modified Ca1Cu3Ti4O12

  • Madhusmita Sahu
  • Arijit Mitra
  • R. N. P. Choudhary
  • B. K. Roul
Article

Abstract

In the present paper, the strontium (Sr)-modified Ca1Cu3Ti4O12 ceramic (further termed as CSCTO) has been fabricated by a conventional cost-effective ceramic route. The prepared sample is characterized to obtain the relationship between the structural and electrical properties in a wide frequency (103–106 Hz) and temperature (25–315 °C) ranges. X-ray diffraction spectra depict a single-phase formation of the compound, crystallized in the cubic system. The dielectric relaxation mechanism and electrical properties of CSCTO have been revealed by studying frequency and temperature dependence of dielectric parameters (εr and tanδ) by dielectric and impedance spectroscopy. The temperature-dependant dielectric constant plots depict that at frequency 1 kHz, the compound has very high dielectric constant (order of 104) and relatively low tangent loss. The occurrence of ultra high dielectric constant of the compound may be due to the space charge polarization, interface and Maxwell–Wagner dielectric relaxation around low frequencies and high-temperature range. The contributions of grains in resistive and capacitive properties of the material can be obtained from the Nyquist plot. It is interesting to note that at room temperature, polarization loop (P ~ E hysteresis loop) of the sintered CSCTO showed lossy behavior. The use of TiO2 and CuO2 nano-sized powders in the starting stage of sample preparation with micron size of CaCO3 and SrCO3 powder promotes the kinetics of quick conventional solid state reaction at a microscopic level, that favors above possible mechanisms.

Notes

Acknowledgements

MS like to express gratitude to the Director, Institute of Materials Science, Bhubaneswar, Odisha, India for providing the experimental facilities. The authors also acknowledge Mr.Sugato Hajra, ITER, Siksha O Anusandhan University and Mr. M. S. Beg, IMS for the experimental help.

References

  1. 1.
    M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Nano-Micro Lett. 8, 291–311 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Schmidt, D.C. Sinclair, Chem. Mater. 22, 6–8 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, ACS Appl. Mater. Interfaces. 7, 25321–25325 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song, J. Mater. Chem. C 4, 6798–6805 (2016)CrossRefGoogle Scholar
  6. 6.
    W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Solid State Commun. 151, 173–176 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439–1448 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Deng, N. Xanthopoulos, P. Muralt, Appl. Phys. Lett. 92, 172909 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B 71, 014118 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Liu, S. Zheng, R. Huang, D. Shi, Y. Huang, S. Wu, Y. Li, L. Fang, C Hu, Adv. Powder Technol. 24, 908–912 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Zhu, J.C. Zheng, L.W.A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. 99, 124114 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. 708, 1026–1032 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Sahu, R.N.P. Choudhary, S. Das, S. Otta, B.K. Roul, J. Mater. Sci. Mater. Electron. 28, 15676–15684 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, X. Zhang, G. Li, W. Li, C. Kang, X. Zhao, H. Lu, Z. Bo, J. Mater. Chem. C 3, 9670–9677 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423–2430 (2012)CrossRefGoogle Scholar
  20. 20.
    M.A. Sulaimain, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 493, 486–492 (2010)CrossRefGoogle Scholar
  21. 21.
    P.P. Rout, S.K. Pradhan, B.K. Roul, Phys. B 407, 2072–2077 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Ceram. Int. 41, 13486–13492 (2015)CrossRefGoogle Scholar
  23. 23.
    A.K. Jonscher, Nature 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    H. Xue, X. Guan, R. Yu, Z. Xiong, J. Alloy. Compd. 482, L14–L17 (2009)CrossRefGoogle Scholar
  25. 25.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloy. Compd. 708, 1026–1032 (2017)CrossRefGoogle Scholar
  26. 26.
    C.G. Koop, Phys. Rev. B 83, 121–124 (1951)ADSCrossRefGoogle Scholar
  27. 27.
    R.P. Pawar, V. Puri, Ceram. Int. 40, 10423–10430 (2014)CrossRefGoogle Scholar
  28. 28.
    U.C. Chung, C. Elissalde, S. Mornet, M. Maglione, C. Estournes, Appl. Phys. Lett. 94, 072903 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 11211–11219 (2016)CrossRefGoogle Scholar
  30. 30.
    Y.J. Li, X.M. Chen, R.Z. Hou, Y.H. Tang, Solid-State Commun. 137, 120 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C.F. Yang, Japnese J. Appl. Phys. 35, 1806 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    P. Ganguly, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111–119 (2009)CrossRefGoogle Scholar
  33. 33.
    V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)CrossRefGoogle Scholar
  34. 34.
    E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T.P. Comyn, A.J. Bell, Mater. Chem. Phys. 162, 106–112 (2015)CrossRefGoogle Scholar
  35. 35.
    J.T. Graham, G.L. Brennecka, P. Ferreira, L. Small, D. Duquette, C. Apblett, S. Landsberger, J.F. Ihlefeld, J. Appl. Phys. 113, 124104 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401–410 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Ram, J. Alloy. Compd. 509, 1744–1748 (2011)CrossRefGoogle Scholar
  38. 38.
    A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)CrossRefGoogle Scholar
  39. 39.
    S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Ceram. Int. 44, 4719–4726 (2017)CrossRefGoogle Scholar
  40. 40.
    L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 3844–3850 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Huang, L. Liu, D. Shi, S.S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadid, Ceram. Int. 39, 6063–6068 (2013)CrossRefGoogle Scholar
  42. 42.
    J. Rout, B.N. Parida, P.R. Das, R.N.P. Choudhary, J. Electron. Mater. 43, 732–739 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 17344–17353 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloy. Compd. 750, 507–514 (2018)CrossRefGoogle Scholar
  46. 46.
    M.A.L. Nobre, S.J. Langfredi, J. Phys. Chem. Solids 62, 1999–2006 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Madhusmita Sahu
    • 1
  • Arijit Mitra
    • 2
  • R. N. P. Choudhary
    • 1
  • B. K. Roul
    • 3
  1. 1.Department of PhysicsSiksha O Anusandhan (Deemed to be University)BhubaneswarIndia
  2. 2.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia
  3. 3.Institute of Materials ScienceBhubaneswarIndia

Personalised recommendations