Applied Physics A

, 124:527 | Cite as

Preparation of n-ZnO/p-Si heterojunction photodetector via rapid thermal oxidation technique: effect of oxidation time

  • Raid A. IsmailEmail author
  • Abdul-Majeed E. Al-Samarai
  • Walla M. Mohammed


Isotype n-ZnO/p-Si heterojunction photodetectors were prepared by thermally deposited zinc film on the single-crystalline silicon substrate followed by rapid thermal oxidation (RTO) at 550 °C for different oxidation times (50, 100 and 150 s). The influence of oxidation time on the structural, optical, morphological, and electrical properties of prepared ZnO film was investigated. The experimental data showed that the oxidation time affecting the optical properties of ZnO films, the optical energy gap of ZnO film increased from 3.18 to 3.7 eV when the oxidation time increased from 50 to 150 s. X-ray diffraction XRD results revealed that the grown ZnO films are polycrystalline with hexagonal wurtzite structure. Preferred orientation along (101) plane was observed for ZnO film oxidized at 150 s. Scanning electron microscope (SEM) results confirmed that morphology and grain size of oxidized ZnO films were depended on the oxidation time. The current–voltage characteristics of ZnO/p-Si heterojunction photodetectors under dark and illuminated conditions have been studied as the function of oxidation time. The ideality factor of the heterojunction was calculated as the function of oxidation time. The responsivity, quantum efficiency, specific detectivity and rise time of the photodetectors were investigated. Increasing the oxidation time from 50 to 150 s resulted in increasing the responsivity of the photodetector from 220 to 300 mA/W at 750 nm.


  1. 1.
    V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Ceram. Int. 41, 14239 (2015)CrossRefGoogle Scholar
  2. 2.
    R. Pietruszka, B. Witkowski, ,S. Gieraltowska, P. Caban, L. Wachnicki, E.Zielony,K. Gwozdz, P.Bieganski,E. Placzek-Popko, M. Godlewski, Sol. Energy Mater. Sol. Cells 143, 99 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Witkowski, L. Wachnicki, S. Gieraltowska, P. Sybilski, K. Kopalko, M. Stachowicz, M. Godlewski, UV detector based on zinc oxide nanorods obtained by the hydrothermal method. Phys. Status Solidi C 11, 1447 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Lu, H. Li, C. Shan, B. Li, D. Shen, L. Zhang, S. Yu, Opt. Express 22, 17524 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Clatot, G. Campet, A. Zeinert, C. Labrugère, A. Rougier, Appl. Surf. Sci. 12, 5181 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A.Bansod A.Pandey, EEE Photonics Technol. Lett. 29, 1191 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    L. Qin, C. Shing, S. Sawyer, EEE Photonics Technol. Lett. 32, 51 (2011)Google Scholar
  8. 8.
    M.-Y. Lu, M.-P. Lu, S.-J. You, C.-W. Chen, Y.-J. Wang, Sci. Rep. 5, 15123 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    L. Guoa, H. Zhanga, D. Zhaoa, B. Li, Z. Zhanga, M. Jianga, D. Shena, Sens. Actuators B Chem. 166–167, 12 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.Z. Guo, D. Zhao, D. Liu, J. Shen, Zhang, Appl. Phys. Lett. 93, 163501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    R. Ismail, A. Al-Naimi, A. Al-Ani, Semicond. Sci. Technol. 23, 075030 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    R. Ismail, A. Al-Naimi, A. Al-Ani, e J. Surf. Sci. Nanotechnol. 4, 636 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Bae, S. Park, S. Ahn, D. Oh, G. Kim, J. Ha, Appl. Surf. Sci. 253, 1758 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Joshi, M. Parmar, K. Rajanna, Sens. Actuators A Phys. 187, 194 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Kim, S. Fujita, Appl. Phys. Lett. 86, 153119 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A.Sales Amalraj, G. Senguttuvan, J. Mater. Sci. Mater. Electron. 25, 2035 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Ismail, B. Rasheed, E. Salm, M. Al-Hadethy, J. Mater. Sci. Mater. Electron. 18, 397 (2007)CrossRefGoogle Scholar
  18. 18.
    M.Balboul A.Farrag, J. Sol Gel. Sci. Technol. 282, 269 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Liu, Z. Hu, J. Sun, Z. Li, H. Huang, J. Zhao, X. Zhang, Y. Wang, Solid State Electron 68, 90 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    V. I.Mihailova, E. Gerbreders, E. Tamanis, R. Sledevskis, P. Viter, Sarajevs, J. Non Cryst. Solids 377, 212 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M. Khanlary, V. Vahedi, A. Reyhani, Molecules 17, 5021 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Rusu, G. Rusu, D. Luca, Acta Phys. Pol. A 119, 850 (2011)CrossRefGoogle Scholar
  23. 23.
    J.H. Li, Y. Huang, Y. Zhang, W. Yang, X.M. Song, J. Li, Electroceram. 26, 84 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Ghosh, K. Das, N. Tripathy, G. Bose, D. Kim, T. Lee, J. Myoung, J. Kar, J. Mater. Sci. Mater. Electron. 26, 7860 (2015)CrossRefGoogle Scholar
  25. 25.
    U. Nayef, M. Jasim, Eng. Tech. J. 33, 37 (2015)Google Scholar
  26. 26.
    A. Gadallah, M. El-Nahass, Adv. Condens. Matter Phys. 2013, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Qin, G. Li, L. Xiao, G. Chen, K. Wang, Q. Wang, Nanoscale Res. Lett. 11, 274 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    B. Abdallah, A. Jazmati, R. Refaai, Mater. Res. 20, 607 (2017)CrossRefGoogle Scholar
  29. 29.
    N. Kamarulzaman, M. Kasim, R. Rusdi, Nanoscale Res. Lett. 10, 346 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    F. Somma, M. Nikl, K. Nitsch, C. Giampaolo, A. Phani, S. Santucci, Superficies Vacio 9, 62 (1999)Google Scholar
  31. 31.
    V. Khranovskyy, A. Ulyashin, G. Lashkarev, B. Svensson, R. Yakimova, Thin Solid Films 516, 1396 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Ikhmayies, N. El-Haija, R. Ahmad-Bitar, J. Semicond. 36, 033005 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    C. Park, I. Jeong, J. Kim, S. Im, Appl. Phys. Lett. 82, 3973 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    R. Ismail, J. Mater. Sci. Mater. Electron. 20, 1219 (2009)CrossRefGoogle Scholar
  35. 35.
    R. Ismail, S. Al-Jawad, N. Hussein, Appl. Phys. A 117, 1977 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    J. Jose, A. Ravindran, K. Nair, ICTACT J. Microelectron. 20, 305 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Ismail, N. Habubi, E. Hadi, Optik 147, 391 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    C. Periasamy, P. Chakrabarti, J. Vac. Sci. Technol. B 29, 051206 (2011)CrossRefGoogle Scholar
  39. 39.
    P. Hazra, S. Singh, S. Jit, Semicond. Technol. Sci. 14, 117 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Esmaeili-Rad, S. Salahuddin, Sci. Rep. 3, 2345 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    R. Ismail, A. Al-Samarai, S. Mohmed, H. Ahmed, Solid State Electron. 82, 115 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Raid A. Ismail
    • 1
    Email author
  • Abdul-Majeed E. Al-Samarai
    • 2
  • Walla M. Mohammed
    • 2
  1. 1.Department of Applied ScienceUniversity of TechnologyBaghdadIraq
  2. 2.Department of Physics, College of EducationUniversity of TikritTikrītIraq

Personalised recommendations