Advertisement

Applied Physics A

, 124:529 | Cite as

Improving the electrical and optical properties of CuCrO2 thin film deposited by reactive RF magnetron sputtering in controlled N2/Ar atmosphere

  • Morteza Ahmadi
  • Morteza Asemi
  • Majid Ghanaatshoar
Article
  • 83 Downloads

Abstract

In this paper, we have investigated the influence of N2 reactive gas on the structural, electrical and optical properties of CuCrO2 thin film deposited on the quartz substrate using RF magnetron sputtering. The introduction of nitrogen into the structure of CuCrO2 thin film clearly improves the electrical and optical properties of the material due to the addition of more charge carriers. The obtained results clearly show that transparency in the visible region and electrical resistivity of the prepared CuCrO2 thin film with N2/(Ar + N2) ratio of 40% are about 73% and 53.0 Ω cm, respectively, which are considerably improved in comparison with the pure CuCrO2 thin film.

Notes

Acknowledgements

We gratefully acknowledge the financial support from the Iran National Science Foundation (INSF), under Grant number 95833328. We also thank Mr. S. Javadi Anaghizi in central laboratory of Shahid Beheshti University for his extensive help in electron microscopy.

References

  1. 1.
    G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Nat. Commun. 4, 2292 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, P. Tailhades, J. Mater. Chem. C 3, 6012 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Cui, H. Cao, W. Zhou, L. Chen, X. Zhai, L. Yu, T. Zheng, P. Yang, Mater. Lett. 163, 28 (2016)CrossRefGoogle Scholar
  4. 4.
    I.C. Kaya, S. Akin, H. Akyildiz, S. Sonmezoglu, Sol. Energy 169, 196 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    M. Asemi, M. Ghanaatshoar, J. Mater. Sci. 53, 7551 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    M. Asemi, H. Mameghani, M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 80, 201 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Abrari, M. Ghanaatshoar, S.S.H. Davarani, H.R. Moazami, I. Kazeminezhad, Appl. Phys. A 123, 326 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M. Asemi, M. Ahmadi, M. Ghanaatshoar, Ceram. Int. 44, 12862 (2018)CrossRefGoogle Scholar
  9. 9.
    T. Jiang, X. Li, M. Bujoli-Doeuff, E. Gautron, L. Cario, S. p. Jobic, R. Gautier, Inorg. Chem. 55, 7729 (2016)CrossRefGoogle Scholar
  10. 10.
    V.-A. Ha, D. Waroquiers, G.-M. Rignanese, G. Hautier, Appl. Phys. Lett. 108, 201902 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A.-J. Cho, K. Park, S. Park, M.-K. Song, K.-B. Chung, J.-Y. Kwon, J. Mater. Chem. C 5, 4327 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    J. Wang, P. Zhang, Q. Deng, K. Jiang, J. Zhang, Z. Hu, J. Chu, J. Mater. Chem. C 5, 183 (2017)CrossRefGoogle Scholar
  14. 14.
    T.R. Senty, B. Haycock, J. Lekse, C. Matranga, H. Wang, G. Panapitiya, A.D. Bristow, J.P. Lewis, Appl. Phys. Lett. 111, 012102 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Ç. Çetin, H. Akyıldız, Mater. Chem. Phys. 170, 138 (2016)CrossRefGoogle Scholar
  16. 16.
    M.S. Prévot, X.A. Jeanbourquin, W.S. Bourée, F. Abdi, D. Friedrich, R. Van De Krol, N. Guijarro, F. Le Formal, K. Sivula, Chem. Mater. 29, 4952 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Banerjee, K. Chattopadhyay, J. Appl. Phys. 97, 084308 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A. Nakanishi, H. Katayama-Yoshida, T. Ishikawa, K. Shimizu, J. Phys. Soc. Jpn. 85, 094711 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    H.-Y. Chen, C.-C. Yang, Surf. Coat. Technol. 231, 277 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Tripathi, I. Terasaki, M. Karppinen, J. Phys.: Condens. Matter. 28, 475801 (2016)ADSGoogle Scholar
  21. 21.
    M. Asemi, M. Ghanaatshoar, Bull. Mater. Sci. 40, 1379 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Nagarajan, A. Draeseke, A. Sleight, J. Tate, J. Appl. Phys. 89, 8022 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Y.F. Wang, Y.J. Gu, T. Wang, W.Z. Shi, J. Sol–Gel Sci. Technol. 59, 222 (2011)CrossRefGoogle Scholar
  24. 24.
    T.-W. Chiu, S.-W. Tsai, Y.-P. Wang, K.-H. Hsu, Ceram. Int. 38, S673 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Götzendörfer, C. Polenzky, S. Ulrich, P. Löbmann, Thin Solid Films 518, 1153 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    M. Asemi, M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 70, 416 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Asemi, M. Ghanaatshoar, Ceram. Int. 42, 6664 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Asemi, M. Ghanaatshoar, Appl. Phys. A 122, 853 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mahapatra, S.A. Shivashankar, Chem. Vap. Deposition 9, 238 (2003)CrossRefGoogle Scholar
  30. 30.
    F. Lin, C. Gao, X. Zhou, W. Shi, A. Liu, J. Alloy. Compd. 581, 502 (2013)CrossRefGoogle Scholar
  31. 31.
    D. Li, X. Fang, A. Zhao, Z. Deng, W. Dong, R. Tao, Vacuum 84, 851 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    R.-S. Yu, C.-P. Tasi, Ceram. Int. 40, 8211 (2014)CrossRefGoogle Scholar
  33. 33.
    I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé, P. Tailhades, Nanomaterials 7, 157 (2017)CrossRefGoogle Scholar
  34. 34.
    E. Arca, K. Fleischer, I. Shvets, Appl. Phys. Lett. 99, 111910 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    G. Dong, M. Zhang, X. Zhao, H. Yan, C. Tian, Y. Ren, Appl. Surf. Sci. 256, 4121 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    H.-Y. Chen, J.-T. Wu, C. Huang, Thin Solid Films 605, 180 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    H. Chiba, N. Hosaka, T. Kawashima, K. Washio, Thin Solid Films (2017)Google Scholar
  38. 38.
    C.-H. Sun, D.-C. Tsai, Z.-C. Chang, E.-C. Chen, F.-S. Shieu, J. Mater. Sci.: Mater. Electron. 27, 9740 (2016)Google Scholar
  39. 39.
    I.C. Kaya, M.A. Sevindik, H. Akyıldız, J. Mater. Sci.: Mater. Electron. 27, 2404 (2016)Google Scholar
  40. 40.
    R.-S. Yu, C.-M. Wu, Appl. Surf. Sci. 282, 92 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    S. Firouzabadi, M. Naderi, K. Dehghani, F. Mahboubi, J. Alloy. Compd. 719, 63 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Asemi, M. Ghanaatshoar, J. Mater. Sci.: Mater. Electron. 29, 6730 (2018)Google Scholar
  43. 43.
    Y. Feng, H. Lu, X. Gu, J. Qiu, M. Jia, C. Huang, J. Yao, J. Phys. Chem. Solids 102, 110 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    D.O. Scanlon, G.W. Watson, J. Mater. Chem. 21, 3655 (2011)CrossRefGoogle Scholar
  45. 45.
    Y. Wang, J. Ghanbaja, D. Horwat, L. Yu, J. Pierson, Appl. Phys. Lett. 110, 131902 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    P. Mandal, N. Mazumder, S. Saha, U.K. Ghorai, R. Roy, G.C. Das, K.K. Chattopadhyay, J. Phys. D: Appl. Phys. 49, 275109 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Morteza Ahmadi
    • 1
    • 2
  • Morteza Asemi
    • 1
    • 2
  • Majid Ghanaatshoar
    • 1
    • 2
  1. 1.Laser and Plasma Research InstituteShahid Beheshti University, G.C.TehranIran
  2. 2.Solar Cells Research GroupShahid Beheshti University, G.C.TehranIran

Personalised recommendations