Applied Physics A

, 124:521 | Cite as

Dual-mode infrared photon-excited synergistic effect in Er3+-doped NaYF4 glass ceramics

  • X. F. Wang
  • Y. Wang
  • Y. Q. Lu
  • L. Meng
  • Y. Y. Bu


Transparent NaYF4:Er3+ glass ceramics was fabricated by conventional melt-quenching technique. X-ray diffraction and transmission electron microscopy analyses show that NaYF4:Er3+ glass ceramics are precipitated among the glass matrix. A synergistic effect between two infrared up-conversion processes is observed in NaYF4:Er3+ glass ceramics through controlling the dual wavelength (980 and 1545 nm) excitation source. The synergistic effect originates from an abnormal energy transfer between Er3+ ions, in which the Er3+ ions in metastable states excited by 980 photons are excited again by the 1545 photons. The 192.26% absolute enhancement of the 669 nm red emission is realized through the synergistic effect of infrared up-conversion induced by the 980 and 1545 nm dual-mode excitation. This work presents an effective method to reduce energy consumption through changing the up-conversion route under dual-mode excitation.



This work was supported by the National Natural Science Foundation of China (NSFC) (11404171, 11504180), the Six Categories of Summit Talents of Jiangsu Province of China (2014-XCL-021). Jiangsu Natural Science Foundation for Excellent Young Scholar (BK20170101). The Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY215174, NY217037, NY218015), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX17_0230).


  1. 1.
    A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Chem. Mater. 15, 3650 (2003)CrossRefGoogle Scholar
  2. 2.
    X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, Y. Li, J. Phys. Chem. B. 108, 18408 (2004)CrossRefGoogle Scholar
  3. 3.
    F. Wang, X.-G. Liu, Chem. Soc. Rev. 38, 976 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, J. Cheng, Chem. Mater. 14, 2910 (2002)CrossRefGoogle Scholar
  5. 5.
    D.-Q. Chen, Z.-Y. Wan, Y. Zhou, Sens. Actuators B Chem. 226, 14 (2016)CrossRefGoogle Scholar
  6. 6.
    X.-Y. Huang, S.-Y. Han, W. Huang, X.-G. Liu, Chem. Soc. Rev. 42, 173 (2013)CrossRefGoogle Scholar
  7. 7.
    D.-Q. Chen, S. Liu, X.-Y. Li, Z.-Y. Wan, S.-C. Li, J. Eur. Ceram. Soc. 37, 4083 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Ivaturi, S.K.W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K.W. Krämer, A. Meijerink, B.S. Richards, J. Appl. Phys. 114, 013505 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Heer, K. Kömpe, H.U. Güdel, M. Haase, Adv. Mater. 16, 2102 (2004)CrossRefGoogle Scholar
  10. 10.
    Y. Wei, F.-Q. Lu, X.-R. Zhang, D.-P. Chen, J. Alloys Compd. 455, 376 (2008)CrossRefGoogle Scholar
  11. 11.
    H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, C.-H. Yan, J. Am. Chem. Soc. 128, 6426 (2006)CrossRefGoogle Scholar
  12. 12.
    A.D. Pablos-Martin, D. Ristic, A. Durán, M. Ferrari, M.J. Pascual, CrystEngComm 19, 967 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, X.-Y. Liu, W.-C. Wang, B. Zhou, Q.-Y. Zhang, Mater. Res. Bull. 95, 235 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C.D. Cañizo, I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007)CrossRefGoogle Scholar
  15. 15.
    S.K.W. MacDougall, A. Ivaturi, J. Marques-Hueso, K.W. Krämer, B.S. Richards, Opt. Express 20, A879 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A. Shalav, B.S. Richards, M.A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Fischer, J.C. Goldschmidt, P. Löper, C.H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S.W. Glunz, J. Appl. Phys. 108, 044912 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    H. Dong, L.-D. Sun, C.H. Yan, Chem. Soc. Rev. 44, 1608 (2015)CrossRefGoogle Scholar
  19. 19.
    X.-F. Wang, Q. Liu, Y.-Y. Bu, C.-S. Liu, T. Liu, X.-H. Yan, RSC. Adv. 5, 86219 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Chen, S.-L. Kang, H. Zhang, T. Wang, S.-C. Lv, Q.-Q. Chen, G.-P. Dong, J.-R. Qiu, Sci. Rep. 7, 45650 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S.F. León-Lius, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. Martín, V. Lavín, Sens. Actuators B Chem. 174, 176 (2012)CrossRefGoogle Scholar
  22. 22.
    X.-F. Wang, Y.-Y. Bu, X.-H. Yan, P.-Q. Cai, J. Wang, L. Qin, T. Vu, H.J. Seo, Opt. Lett. 41, 5314 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    F. Auzel, Chem. Rev. 104, 139 (2004)CrossRefGoogle Scholar
  24. 24.
    Y.-H. Yao, C. Xu, Y. Zheng, C.-S. Yang, P. Liu, J.-X. Ding, T.-Q. Jia, J.-R. Qiu, S.-A. Zhang, Z.-R. Sun, J. Mater. Sci. 51, 5460 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Y.-S. Chen, J.-P. Zhou, Y.-C. Jiao, W. He, H.-H. Wang, X.-L. Hao, J.-X. Lu, S.-E. Yang, J. Lumin. 134, 504 (2013)CrossRefGoogle Scholar
  26. 26.
    L.-L. Wang, W.-P. Qin, Y. Wang, G.-F. Wang, C.-Y. Cao, G.-D. Wei, R. Kim, D.-S. Zhang, F.-H. Ding, C.-F. He, J. Nanosci. Nanotechnol. 10, 1825 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.College of ScienceNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  3. 3.Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province NanjingJiangsuPeople’s Republic of China

Personalised recommendations