Applied Physics A

, 124:532 | Cite as

Effect of Sr doping on the magnetocapacitive effect in Bi0.6Sr0.4FeO3−δ polycrystalline ceramics

  • R. RajeshEmail author
  • S. John Ethilton
  • K. Ramachandran
  • K. Ramesh Kumar
  • Samba Siva Vadla
  • I. B. Shameem Banu


Single-phase polycrystalline BiFeO3 and Bi0.6Sr0.4FeO3−δ are prepared by conventional solid-state route. The host BiFeO3 shows rhombohedral phase (R3c) and Bi0.6Sr0.4FeO3−δ, cubic phase (Pm3m). The M–H loop of Bi0.6Sr0.4FeO3−δ exhibits weak magnetization at ambient temperature with saturation magnetization of 5.097 emu/g which is almost two orders larger in magnitude than in BiFeO3 (0.088 emu/g). The temperature-dependent dielectric permittivity of Bi0.6Sr0.4FeO3−δ shows a strong anomaly at 321 °C, a signature of magnetoelectric coupling present in this material and the magnetocapacitance effect is found to be 5.3% at a field of 4 kOe.



One of the authors (RR) would like to thank the research centres: Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai, for VSM and DSC studies; Department of Physics, Alagappa University, Karaikudi, for the X-ray diffraction measurements; Department of Nanoscience and Technology, Karunya University, Coimbatore, for SEM analysis. Author KR acknowledges UGC, Govt. of India, for emeritus scheme.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    F. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts et al., J. Appl. Phys. 97, 093903 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    T.D. Rao, T. Karthik, A. Srinivas, S. Asthana, Solid State Commun. 152, 2071 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    F.P. Ianculescu, P. Gheorghiu, O. Postolache, L. Oprea, Mitoseriu, J. Alloys Compd. 504, 420 (2010)CrossRefGoogle Scholar
  7. 7.
    Reetu, A.Agarwal, S.Sanghi, Ashima, J. Appl. Phys. 110, 073909 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, H. Zhang, J. Yin, H. Zhang, J. Chen, W. Wang, G. Wu, J. Magn. Magn. Mater. 322, 2251 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Ceram. Int. 38, 3829 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Ray, A. Biswal, S. Acharya, V. Ganesan, D. Pradhan, P. Vishwakarma, J. Magn. Magn. Mater. 324, 4084 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P. Singh, Y.A. Park, K.D. Sung, N. Hur, J.H. Jung, W.-S. Noh, J.-Y. Kim, J. Yoon, Y. Jo, Solid State Commun. 150, 431 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Mandal, T. Rakshit, S.K. Ray, S.K. Mishra, P.S.R. Krishna, A. Chandra, J. Phys. Condens. Matter. 25, 055303 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Varshney, A. Kumar, J. Mol. Struct. 1038, 242 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    B. Kundys, A. Maignan, C. Martin, N. Nguyen, C. Simon, Appl. Phys. Lett. 92, 112905 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S. Thakur, O. Pandey, K. Singh, Ceram. Int. 40, 16371 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Balamurugan, N.H. Kumar, P.N. Santhosh, J. Appl. Phys. 105, 07D909 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Hussain, S. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, S.I. Shah, J. Alloys Compd. 622, 8 (2015)CrossRefGoogle Scholar
  18. 18.
    B.H. Toby, R.B.V. Dreele, J. Appl. Crystallogr. 46, 544 (2013)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    Reetu, A. Agarwal, S. Sanghi, Ashima, N. Ahlawat, Monica, J. Appl. Phys. 111, 113917 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    G. Arya, R.K. Kotnala, N.S. Negi, J. Am. Ceram. Soc. 97, 1475 (2014)CrossRefGoogle Scholar
  22. 22.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)CrossRefGoogle Scholar
  23. 23.
    N. Adhlakha, K.L. Yadav, R. Singh, Smart Mater. Struct. 23, 105024 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    V.M. Gaikwad, S.A. Acharya, J. Appl. Phys. 114, 193901 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, S. Faridi, F. Rehman, T.A. Abbas, S.I. Shah, J. Am. Ceram. Soc. 96, 3141 (2013)Google Scholar
  26. 26.
    S. Layek, H.C. Verma, Adv. Mat. Lett. 3, 533 (2012)CrossRefGoogle Scholar
  27. 27.
    D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. 88, 212907 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    K.W. Wagner, Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  29. 29.
    Z. Dai, Y. Akishig, J. Phys. D Appl. Phys. 43, 445403 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Muneeswaran, R. Dhanalakshmi, N.V. Giridharan, J. Mater.Sci. Mater. Electron. 26, 6 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    A. Kumar, K.L.Yadav, J. Alloys Compd. 554, 138 (2013)CrossRefGoogle Scholar
  34. 34.
    G.S. Arya, N.S. Negi, Phys. D Appl. Phys. 46, 095004 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19, 5431 (2007)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, Y. Sui, X. Wang, J. Tang, W. Su, J. Appl. Phys. 105, 07D918 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsVelammal College of Engineering and TechnologyMaduraiIndia
  2. 2.Department of PhysicsGandhigram Rural Institute Deemed UniversityDindigulIndia
  3. 3.Department of PhysicsUniversity of JohannesburgAuckland ParkSouth Africa
  4. 4.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia
  5. 5.Department of PhysicsB.S. Abdur Rahman UniversityChennaiIndia

Personalised recommendations