Advertisement

Applied Physics A

, 124:530 | Cite as

Effect of thickness on the structural, morphological, electrical and optical properties of Nb plus Ta co-doped TiO2 films deposited by RF sputtering

Article
  • 25 Downloads

Abstract

Transparent conductive Nb plus Ta co-doped TiO2 films with various thicknesses were deposited on quartz substrates by RF magnetron sputtering with vacuum annealing. The effect of film thickness on structural, morphological, electrical and optical properties of the films was investigated in detail. X-ray diffraction measurements indicate that the post-annealed films are polycrystalline anatase structure, which is further confirmed by Raman spectroscopy. The average crystal size and surface roughness of the annealed films gradually increase as thickness increases from 50 to 500 nm. X-ray photoelectron spectroscopy results show that the substitution of Nb5+ and Ta5+ ions in Ti4+ sites can be significantly promoted by annealing treatment. Meanwhile, Raman spectroscopy results indicate that with the increase of film thickness, the peak position of Eg (1) mode shifts to higher band frequencies, implying the increase of carrier concentration. The average visible transmittance of all these films is in the range of 75–81%. The lowest resistivity of 8.9 × 10−4 Ω cm with carrier concentration of 1.1 × 1021 cm−3 and Hall mobility of 6.2 cm2 V−1 s−1 can be obtained at the film thickness of 500 nm, indicating that the optical and electrical properties of optimized NTTO films can be compared to those of Nb or Ta single-doped anatase TiO2 films. However, co-doping with Nb and Ta provides one possibility to complement the limitations of each dopant.

Notes

Acknowledgements

The authors acknowledge the Analytical and Testing Center in Huazhong University of Science and Technology for XRD, SEM, XPS and Raman measurements. The finance support from the National Natural Science Foundation of China (11374114) is also acknowledged.

References

  1. 1.
    R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, S.R. Jadkar, J. Mater. Sci.-Mater. El. 27, 1134 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, M. Xu, J. Li, J. Ma, X. Wang, Z. Wei, X. Chu, X. Fang, F. Jin, Surf. Coat. Tech. 330, 255 (2017)CrossRefGoogle Scholar
  3. 3.
    M.V. Castro, L. Rebouta, P. Alpuim, M.F. Cerqueira, M. Benelmekki, C.B. Garcia, E. Alves, N.P. Barradas, E. Xuriguera, C.J. Tavares, Thin Solid Films 550, 404 (2014)Google Scholar
  4. 4.
    P. Mazzolini, P. Gondoni, V. Russo, D. Chrastina, C.S. Casari, A.L. Bassi, J. Phys. Chem. C 119, 6988 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Tseng, L. Chen, J. Tang, M. Shih, S. Chu, J. Electron. Mater. 46, 1476 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Gillispie, M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, J. Mater. Res. 22, 2832 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    P. Mazzolini, T. Acartuerk, D. Chrastina, U. Starke, C.S. Casari, G. Gregori, A. Li, Bassi, Adv. Electron. Mater. 2, 1500316 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Zhao, W. Wang, X. Feng, L. He, Q. Cao, C. Luan, J. Ma, Ceram. Int. 43, 8391 (2017)CrossRefGoogle Scholar
  11. 11.
    X. Han, G. Shao, Phys. Chem. Chem. Phys. 15, 9581 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Ding, J. Gao, Y. Ding, Acta Chim. Sinica 69, 2959 (2011)Google Scholar
  13. 13.
    S. Seeger, K. Ellmer, M. Weise, D. Gogova, D. Abou-Ras, R. Mientus, Thin Solid Films 605, 44 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Zhang, C. Bao, S. Ma, L. Zhang, S. Hou, J. Australas. Ceram. Soc. 48, 214 (2012)Google Scholar
  15. 15.
    Y. Sato, Y. Sanno, C. Tasaki, N. Oka, T. Kamiyama, Y. Shigesato, J. Vac. Sci. Technol. A 28, 851 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, G. Shao, Sol. Energ. Mat. Sol. C. 149, 310 (2016)CrossRefGoogle Scholar
  17. 17.
    A.V. Manole, M. Dobromir, M. Girtan, R. Mallet, G. Rusu, D. Luca, Ceram. Int. 39, 4771 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Sato, H. Akizuki, T. Kamiyama, Y. Shigesato, Thin Solid Films 516, 5758 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71, 18430218 (2005)CrossRefGoogle Scholar
  20. 20.
    P. Mazzolini, V. Russo, C.S. Casari, T. Hitosugi, S. Nakao, T. Hasegawa, A.L. Bassi, J. Phys. Chem. C 120, 18878 (2016)CrossRefGoogle Scholar
  21. 21.
    V.G. Krishnan, A. Purushothaman, P. Elango, J. Mater. Sci.-Mater. El. 28, 11473 (2017)CrossRefGoogle Scholar
  22. 22.
    F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, X.M. Wu, L.J. Zhuge, Vacuum 89, 127 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    G. Wan, S. Wang, X. Zhang, M. Huang, Y. Zhang, W. Duan, L. Yi, Appl. Surf. Sci. 357, 622 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    B. Dong, G. Fang, J. Wang, W. Guan, X. Zhao, J. Appl. Phys. 101, 0337133 (2007)Google Scholar
  25. 25.
    K. Zhu, Y. Yang, W. Song, Mater. Lett. 145, 279 (2015)CrossRefGoogle Scholar
  26. 26.
    Q. Ma, Z. Ye, H. He, J. Wang, L. Zhu, B. Zhao, Vacuum 82, 9 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, Z. Ben Ayadi, J. Alloy. Compd. 695, 697 (2017)CrossRefGoogle Scholar
  28. 28.
    M.M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, K. Akimoto, Appl. Surf. Sci. 257, 4026 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Mahmood, N. Ahmed, Q. Raza, T.M. Khan, M. Mehmood, M.M. Hassan, N. Mahmood, Phys. Scripta 82, 0658016 (2010)Google Scholar
  30. 30.
    A.K. Zak, M.E. Abrishami, W.H. Abd Majid, R. Yousefi, S.M. Hosseini, Ceram. Int. 37, 393 (2011)CrossRefGoogle Scholar
  31. 31.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Appl. Surf. Sci. 257, 10869 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Lucio-Lopez, A. Maldonado, R. Castanedo-Perez, G. Torres-Delgado, M.D.L.L. Olvera, Sol. Energ. Mat. Sol. C. 90, 2362 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of Chemistry and Materials ScienceHubei Engineering UniversityXiaoganPeople’s Republic of China

Personalised recommendations