Applied Physics A

, 124:536 | Cite as

Synthesis, characterization and properties of Mn-doped ZnO nanoparticles

  • Rayan Khalid
  • Abdulaziz N. Alhazaa
  • M. A. Majeed Khan
Rapid Communication


In the present study, undoped and Mn-doped ZnO nanoparticles with different Mn concentrations (4 and 6 at.%) have been prepared by polymeric precursor method. The effects of Mn content on the structural, optical, and magnetic properties of these nanoparticles were investigated in detail. Room temperature X-ray diffraction (XRD) data revealed hexagonal wurtzite structure of the samples and no other secondary phase has been noticed. The microstructural analysis confirms that the particles of Mn:ZnO are spherical in shape with size ranging between 32 and 45 nm as calculated by Scherrer’s equation and transmission electron microscopy (TEM) images. UV–visible absorption spectroscopy measurements affirm a blue-shift in the band gap with increasing Mn doping in ZnO. The hysteresis loops (M–H) exhibit ferromagnetic behaviour of all samples at room temperature. Temperature-dependent resistivity measurements show semiconducting nature of the samples and reduction in the resistivity on Mn substitution.



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Undergraduate Students Research Support Program, Project no. URSP-3-17-4.


  1. 1.
    N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418 (2002)CrossRefGoogle Scholar
  2. 2.
    U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dog˘an, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Prog. Mater Sci. 50, 293 (2005)CrossRefGoogle Scholar
  4. 4.
    B. Panigrahy, M. Aslam, D. Bahadur, Aqueous synthesis of Mn- and Co-doped ZnO nanorods. J. Phys. Chem. C 114, 11758–11763 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Nakayama, H. Tanaka, K. Masuko, T. Fukushima, A. Ashida, N. Fujimura, Photoluminescence properties peculiar to the Mn-related transition in a lightly alloyed ZnMnO thin film grown by pulsed laser deposition. J. Appl. Phys. Lett. 88, 241908 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    X. Ma, Z. Wang, The UV and blue light emission properties of Mn doped ZnO nanocrystals. J. Microelectron. Eng. 88, 3168 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Preparation of ZnO nanoparticles from [bis(acetylacetonato) zinc(II)]–oleylamine complex by thermal decomposition. Mater. Lett. 62, 1890–1892 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Ben Mahmoud, H.J. Von Bardeleben, J.L. Cantin, E. Chikoidze, A. Mauger, An electron paramagnetic resonance study of type: a diluted magnetic semiconductor. J. Appl. Phys. 101, 013902 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Dinesha, H.S. Jayanna, S. Mohanty, S. Ravi, Structural, electrical and magnetic properties of Co and Fe co-doped ZnO nanoparticles prepared by solution combustion method. J. Alloy Compd. 490, 618–623 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Panday, N. Kumar, Influence of Co-doping on the thermal, structural, and optical properties of sol–gel derived ZnO nanoparticles. Mater. Chem. Phys. 120, 393–398 (2010)CrossRefGoogle Scholar
  11. 11.
    R.R. Prabhakar, N. Mathews, K.B. Jinesh, K.R.G. Karthik, S.S. Pramana, B. Varghese, C.H. Sow, S. Mhaisalkar, Efficient multispectral photodetection using Mn doped ZnO nanowires. J. Mater. Chem. 22, 9678 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol–gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723–732 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    D. Jung, Syntheses and characterizations of transition metal-doped ZnO. Solid State Sci. 12, 466–470 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Othman, M.A. Osman, E.M.M. Ibrahim, M.A. Ali, A.G. Abd-Elrahim, Mn-doped ZnO nanocrystals synthesized by sonochemical method: structural, photoluminescence, and magnetic properties. Mater. Sci. Eng. B 219, 1–9 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Labuayai, V. Promarak, S. Maensiri, Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl. Phys. A. 94, 755 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta A 130, 581–590 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A. Samariya et al., Defect-induced reversible ferromagnetism in Fe-doped ZnO semiconductor: an electronic structure and magnetization study. Mater. Chem. Phys. 123, 678–684 (2010)CrossRefGoogle Scholar
  18. 18.
    P.V.D. Heide, X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices. Wiley Interscience, 1st Ed. 2011 Wiley, HobokenCrossRefGoogle Scholar
  19. 19.
    J. Das, I.R. Evans, D. Khushalani, Zinc glycolate: a precursor to ZnO. Inorg. Chem. 48, 3508 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Salavati-Niasari, N. Mir, F. Davar, ZnO nanotriangles: synthesis, characterization and optical properties. J Alloys Compd. 476, 908–912 (2009)Google Scholar
  21. 21.
    Y. Yang, Y. Li, L. Zhu, H. He, Hu L, J Huang, F. Hu, B He, Z Ye, Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. Nanoscale 5, 10461 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    V.D. Mote, Y. Purushotham, B.N. Dole, Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol–gel method. Mater. Des. 96, 99–105 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Hu, Z. Zhang, Z. Zho, H. Qin, M. Jiang, Room-temperature ferromagnetism in MgO nanocrystalline powders. Appl. Phys. Lett. 93, 192503 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem. Eng. J. 146, 498–502 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Kapilashrami, J. Xu, V. Ström, K.V. Rao, L. Belova, Transition from ferromagnetism to diamagnetism in undoped ZnO thin films. Appl. Phys. Lett. 95, 033104 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    M. El-Hilon, A.A. Dakhel, Structural and magnetic properties of Mn-doped ZnO powders. J. Magn. Magn. Mater. 323, 2202–2205 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Magnetization study of nanograined pure and Mn-doped ZnO films: formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 79, 205206 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    B.B. Straumal, S.G. Protasova, A.A. Mazilkin, A.A. Myatiev, P.B. Straumal, G. Schütz, E. Goering, B. Baretzky, Ferromagnetic properties of the Mn-doped nanograined ZnO films. J. Appl. Phys. 108, 073923 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Antiferromagnetism in bulk magnetic semiconductors prepared by the coprecipitation technique. Appl. Phys. Lett. 87, 052501–052503 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard Mater. 156, 194–200 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Singh, S. Kumar, R. Das, K. Pratap, Sahoo, Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods. RSC Adv. 5, 88767 (2015)CrossRefGoogle Scholar
  32. 32.
    M.A. Majeed Khan, S. Kumar, T. Ahamad, A.N. Alhazaa, Enhancement of photocatalytic and electrochemical properties of hydrothermally synthesized WO3 nanoparticles via Ag loading. J. Alloy Compd. 743, 485–493 (2018)CrossRefGoogle Scholar
  33. 33.
    M.A. Majeed, W. Khan, M. Khan, M. Ahamed, Alhoshan, Structural and optical properties of In2O3 nanostructured thin film. Mater. Lett. 79, 119–121 (2012)CrossRefGoogle Scholar
  34. 34.
    K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431–439 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    D. Hu, X. Liu, S. Deng, Y. Liu, Z. Feng, B. Han, Y. Wang, Y. Wang, Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Phys. E Low-Dimens. Syst. Nanostruct. 61, 14–22 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    T. Ahamad, M.A.M. Khan, S. Kumar, M. Ahamed, M. Shahabuddin, A.N. Alhazaa, CdS quantum dots: growth, microstructural, optical and electrical characteristics. Appl. Phys. B 122, 179 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Majeed Khan, S. Kumar, M. Ahamed, Structural, electrical and optical properties of nanocrystalline silicon thin films deposited by pulsed laser ablation. Mater. Sci. Semicond. Process. 30, 169–173 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rayan Khalid
    • 1
  • Abdulaziz N. Alhazaa
    • 1
    • 2
  • M. A. Majeed Khan
    • 2
  1. 1.Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations