Advertisement

Applied Physics A

, 124:790 | Cite as

A physical–statistical model for the growth process of carbon nanotubes

  • Mengqi Fan
  • Su Wu
  • Chi Xu
Article
  • 49 Downloads

Abstract

In the growth process of carbon nanotube (CNT) arrays, the height and flatness of the array must be controlled. In general, a profile control algorithm can be used to characterize the morphology of the CNT array through considering the parameters of the profile function as control objective. This paper examines the performance of the present model using real data and finds the defect of losing correlation information in the data. To solve this limitation, the semivariogram borrowed from geostatistics is introduced to add a spatial correlation. Furthermore, we drive the growth height formula based on a physical mechanism and then propose a physical–statistical model that contains a spatial correlation. Simulation and validation are provided to verify the performance of the new model.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant 71072012, and the Tsinghua University Initiative Scientific Research Program. The authors would like to thank Prof. S. Fan, Dr. L. Liu, and Dr. Q. Cai from Tsinghua-Foxconn Nanotechnology Research Center for providing the raw data and expertise on CNTs array production. They also thank to the National Natural Science Foundation of China.

References

  1. 1.
    K.L. Jiang, Q.Q. Li, S.S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns: Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419(6909), 801–801 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)CrossRefGoogle Scholar
  4. 4.
    X. Wang, S. Wu, K.B. Wang, A spatial calibration model for Nanotube film quality prediction. IEEE Trans. Autom. Sci. Eng. 13(2), 903–917 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng, Y. Zhang, Y. Sun, Q. Li, S. Fan, K. Jiang, Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20(6), 885–891 (2010)CrossRefGoogle Scholar
  6. 6.
    R.S. Wagner, W.C. Ellis, Vapor-liquid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    E.I. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    J. Rostrup-Nielsen, D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts. J. Catal. 48(1), 155–165 (1977)CrossRefGoogle Scholar
  9. 9.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321–326 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292(4–6), 567–574 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    K. Jiang, C. Feng, K. Liu, S. Fan, A vapor–liquid–solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 7(4), 1494–1504 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Mai, X. Deng, The applications of statistical quantification techniques in nanomechanics and nanoelectronics. Nanotechnology 21(40), 405704 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    T. Dasgupta, B. Weintraub, V.R. Joseph, A physical statistical model for density control of nanowires. IIE Trans. 43(4), 233–241 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Wang, Q. Huang, Cross-domain model building and validation (CDMV): A new modeling strategy to reinforce understanding of nanomanufacturing processes. IEEE Trans. Autom. Sci. Eng. 10(3), 571–578 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Wang, B. Li, K. Wang, S. Wu, An engineering-statistical model for synthesis process of nanomaterials, in 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE) (2011), pp. 72–76Google Scholar
  17. 17.
    Q. Huang, Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale. IIE Trans. 43(1), 1–11 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Xu, Q. Huang, Modeling the interactions among neighboring nanostructures for local feature characterization and defect detection. IEEE Trans. Autom. Sci. Eng. 9(4), 745–754 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Dasgupta, C. Ma, V.R. Joseph, Z.L. Wang, C.F.J. Wu, Statistical modeling and analysis for robust synthesis of nanostructures. J. Am. Stat. Assoc. 103(482), 594–603 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Wang, S. Wu, K. Wang, A run-to-run profile control algorithm for improving the flatness of nano-scale products. IEEE Trans. Autom. Sci. Eng. 12(1), 192–203 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression: I. Biometrika 37(3/4), 409–428 (1950)MathSciNetCrossRefGoogle Scholar
  22. 22.
    O. Schabenberger, C.A. Gotway, Statistical Methods for Spatial Data Analysis (CRC Press, London, 2004)zbMATHGoogle Scholar
  23. 23.
    D.M. Hawkins, N. Cressie, Robust kriginga proposal. J. Int. Assoc. Math. Geol. 16(1), 3–18 (1984)CrossRefGoogle Scholar
  24. 24.
    A.G. Journel, C.J. Huijbregts, Mining Geostatistics (Academic Press, New York, 1978)Google Scholar
  25. 25.
    N. Cressie, D.M. Hawkins, Robust estimation of the variogram: I. J. Int. Assoc. Math. Geol. 12(2), 115–125 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    O. Danielsson, A. Henry, E. Janzen, Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers. J. Cryst. Growth 243(1), 170–184 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    N. Cressie, Statistics for Spatical Data (Wiley, New York, 1993)Google Scholar
  28. 28.
    D. Ginsbourger, D. Dupuy, A. Badea, L. Carraro, O. Roustant, A note on the choice and the estimation of kriging models for the analysis of deterministic computer experiments. Appl. Stoch. Models Bus. Ind. 25(2), 115–131 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringTsinghua UniversityBeijingChina

Personalised recommendations