Advertisement

Applied Physics A

, 124:449 | Cite as

Realizing 11.3% efficiency in PffBT4T-2OD fullerene organic solar cells via superior charge extraction at interfaces

  • Cheng Xu
  • Matthew Wright
  • Naveen Kumar Elumalai
  • Md Arafat Mahmud
  • Dian Wang
  • Vinicius R. Gonçales
  • Mushfika Baishakhi Upama
  • Faiazul Haque
  • J. Justin Gooding
  • Ashraf Uddin
Article
  • 135 Downloads

Abstract

The influence of interface engineering on the performance and photovoltaic properties of the PffBT4T-2OD poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′′′-quaterthiophen-5,5′′′-diy)] based polymer solar cells (PSCs) are investigated. Owing to the high crystallinity and processing parameter dependent morphology distribution of the PffBT4T-2OD polymer, the performance of the devices can vary significantly with power conversion efficiency (PCE) of around 10% has been reported via such morphology modification. In this work, we demonstrate the effect of trap state passivation at the electron transport layer (ETL)/Polymer interface on the performance of PffBT4T-2OD based PSCs. Aluminium doped ZnO (AZO) and pristine Zinc Oxide (ZnO) are employed as ETLs, which modified the polymer wettability and blend morphology. The interface engineered devices exhibited high PCE of over 11% with high Jsc of about 22.5 mA/cm2 which is about 19% higher than that of the conventional ZnO based devices. The reason behind such distinct enhancements is investigated using several material and device characterization methods including electrochemical impedance spectroscopy (EIS). The recombination resistance (Rrec) of the AZO based device is found to be 4.5 times higher than that of the ZnO devices. The enhanced photovoltaic parameters of the AZO based device are attributed to the superior charge transport characteristics in the ETL as well as at the ETL/polymer interface, enabling effective charge extraction at the respective electrodes with much lesser recombination. The mechanism and the processes behind such enhancements are also elaborated in detail.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by Future Solar Technologies Pty. Ltd. for this research work. The authors would also like to acknowledge the endless support from the staffs of Photovoltaic and Renewable Energy Engineering School, Electron Microscope Unit (EMU) and Solid State and Elemental Analysis Unit under Mark Wainwright Analytical Center, UNSW. J.J.G. acknowledges the ARC for the ARC Australian Laureate Fellowship (FL150100060).

Compliance with ethical standards

Conflict of interests

The author(s) declare no competing financial interests.

Supplementary material

339_2018_1867_MOESM1_ESM.docx (353 kb)
Supplementary material 1 (DOCX 353 KB)

References

  1. 1.
    R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36 (2012)CrossRefGoogle Scholar
  2. 2.
    F.C. Krebs, Sol. Energy Mater Sol. 93, 394 (2009)CrossRefGoogle Scholar
  3. 3.
    F.C. Krebs, N. Espinosa, M. Hösel, R.R. Søndergaard, M. Jørgensen, Adv. Mater. 26, 29 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 22, E135 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Liu et al., Nat. Commun. 5, 5293 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Ma et al., Adv. Energy Mater. 5, 1501400 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 1, 15027 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G.J. Matt, M. Halik, C.J. Brabec, J. Mater. Chem. 1, 6004 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Liu, X. Li, Y. Li, C. Song, L. Zhu, W. Zhang, H.-Q. Wang, J. Fang, Adv. Mater. 28, 7405 (2016)CrossRefGoogle Scholar
  11. 11.
    C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.-W. Tsang, T.-H. Lai, J.R. Reynolds, F. So, Nat. Photonics 6, 115 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    E.J. Lee, S.W. Heo, Y.W. Han, D.K. Moon, J. Mater. Chem. C 4, 2463 (2016)CrossRefGoogle Scholar
  13. 13.
    M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, A.M. Soufiani, M. Wright, C. Xu, F. Haque, A. Uddin, ACS Appl. Mater. Interfaces 9, 33841 (2017)CrossRefGoogle Scholar
  14. 14.
    I. Litzov, H. Azimi, G. Matt, P. Kubis, T. Stubhan, G. Popov, C.J. Brabec, Org. Electron. 15, 569 (2014)CrossRefGoogle Scholar
  15. 15.
    J.Y. Kim et al., Opt. Express 23, A1334 (2015)CrossRefGoogle Scholar
  16. 16.
    M.V. Srinivasan, N. Tsuda, P.-K. Shin, S. Ochiai, RSC Adv. 5, 56262 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Jia, L. Yang, W. Qin, S. Yin, F. Zhang, J. Wei, Renew. Energy 50, 565 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Kang, D. Lee, K.S. Choi, Langmuir 32, 41 (2016)Google Scholar
  19. 19.
    M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Sol. Energy Mater. Sol. 159, 251 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, C.J. Brabec, Sol. Energy Mater. Sol. 95, 2194 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Hjiri, L. Mir, S. Leonardi, Chemosensors 2, 121 (2014)CrossRefGoogle Scholar
  22. 22.
    C.S. Prajapati, P.P. Sahay, Cryst. Res. Technol. 46, 1086 (2011)CrossRefGoogle Scholar
  23. 23.
    M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, M. Wright, T. Sun, C. Xu, F. Haque, A. Uddin, RSC Adv. 6, 86108 (2016)CrossRefGoogle Scholar
  24. 24.
    S.W. Xue, X.T. Zu, W.G. Zheng, H.X. Deng, X. Xiang, Phys. B Condens. Mater. 381, 209 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5, 993 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S.H. Tsai, S.T. Ho, H.J. Jhuo, C.R. Ho, S.A. Chen, J.-H. He, Appl. Phys. Lett. 102, 253111 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    P. Schilinsky, C. Waldauf, C.J. Brabec, Adv. Funct. Mater. 16, 1669 (2006)CrossRefGoogle Scholar
  28. 28.
    J.I. Basham, T.N. Jackson, D.J. Gundlach, Adv. Energy Mater. 4 (2014)Google Scholar
  29. 29.
    B. Arredondo, M.B. Martín-López, B. Romero, R. Vergaz, P. Romero-Gomez, J. Martorell, Sol. Energy Mater Sol. 144, 422 (2016)CrossRefGoogle Scholar
  30. 30.
    E.-P. Yao, S.-M. Shiu, Y.-J. Tsai, Y.-S. Lin, W.-C. Hsu, IEEE J. Photovolt. 5, 903 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Guerrero, S. Loser, G. Garcia-Belmonte, C.J. Bruns, J. Smith, H. Miyauchi, S.I. Stupp, J. Bisquert, T.J. Marks, Phys. Chem. Chem. Phys. 15, 16456 (2013)CrossRefGoogle Scholar
  32. 32.
    M.B. Upama, N.K. Elumalai, M.A. Mahmud, M. Wright, D. Wang, C. Xu, F. Haque, K.H. Chan, A. Uddin, Appl. Surf. Sci. 416, 834 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    R. Ji, J. Cheng, X. Yang, J. Yu, L. Li, RSC Adv. 7, 3059 (2017)CrossRefGoogle Scholar
  34. 34.
    M.B. Upama et al., Organ. Electron. 50, 279 (2017)CrossRefGoogle Scholar
  35. 35.
    Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, J. Photochem. Photobiol. A 231, 9 (2012)CrossRefGoogle Scholar
  36. 36.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Organ. Electron. 9, 847 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Cai, X. Gong, Y. Cao, Sol. Energy Mater Sol. 94, 114 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Ryu, J.H. Noh, N.J. Jeon, Y. Chan Kim, W.S. Yang, J. Seo, S.I. Seok, Energy Environ. Sci. 7, 2614 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Major, A. Banerjee, K.L. Chopra, K.C. Nagpal, Thin Solid Films 143, 19 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    J. Kim, G. Kim, T.K. Kim, S. Kwon, H. Back, J. Lee, S.H. Lee, H. Kang, K. Lee, J. Mater. Chem. A 2, 17291 (2014)CrossRefGoogle Scholar
  41. 41.
    P.P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, J. Bisquert, J. Phys. Chem. Lett. 2, 407 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Bisquert, Phys. Chem. Chem. Phys. 10, 3175 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Prosa et al., ACS Appl. Mater. Interfaces 8, 1635 (2016)CrossRefGoogle Scholar
  44. 44.
    A.P. Roth, J.B. Webb, D.F. Williams, Solid State Commun. 39, 1269 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    M. Smirnov, A.P. Rambu, C. Baban, G.I. Rusu, J. Res. Phys. 1, 021011 (2010)Google Scholar
  46. 46.
    A. Aprilia, P. Wulandari, V. Suendo, R. Herman, A. Hidayat, M. Fujii, Ozaki, Sol. Energy Mater. Sol. 111, 181 (2013)CrossRefGoogle Scholar
  47. 47.
    Y. Imai, A. Watanabe, J. Mater. Sci. Mater. 15, 743 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cheng Xu
    • 1
  • Matthew Wright
    • 1
  • Naveen Kumar Elumalai
    • 1
  • Md Arafat Mahmud
    • 1
  • Dian Wang
    • 1
  • Vinicius R. Gonçales
    • 2
  • Mushfika Baishakhi Upama
    • 1
  • Faiazul Haque
    • 1
  • J. Justin Gooding
    • 2
  • Ashraf Uddin
    • 1
  1. 1.School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.School of Chemistry and Australian Centre for NanoMedicineUniversity of New South WalesSydneyAustralia

Personalised recommendations