Applied Physics A

, 124:367 | Cite as

Rapid and controllable perforation of carbon nanotubes by microwave radiation

  • Neda Ojaghi
  • Maryam Mokhtarifar
  • Zahra Sabaghian
  • Hamed Arab
  • Morteza Maghrebi
  • Majid Baniadam
Article
  • 31 Downloads

Abstract

This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W). The perforation was evaluated using different techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller method. The results of the oxidation of carbonaceous materials indicated that the relative amount of oxygen functional groups increased without total oxidation of carbon up to ~ 60 s. After 60 s, the amount of functional groups decreased as the total oxidation started suddenly. Afterwards, at around 120 and 420 s, the oxidation of Ag-decorated CNTAs reached the point of total perforation and total cutting, respectively. Though carbon decomposition terminated at around 420 s, the total pore volume and surface area increased continuously. This was attributed to the steady growth of Ag nanoparticles located between CNTAs.

Notes

Acknowledgements

The authors are grateful to Iran Nanotechnology Initiative Council for financial support.

References

  1. 1.
    Y.-Q. Cai, G.-B. Jiang, J.-F. Liu, Q.-X. Zhou, Anal. Chim. Acta 494, 149 (2003)CrossRefGoogle Scholar
  2. 2.
    L. Jiang, L. Gao, J. Sun, J. Colloid Interface Sci. 260, 89 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    L. Ting, W. Pang, X.Y. Ren RP, Han, J. Comput. Theor. Nanosci. 10(10), 2385 (2013)CrossRefGoogle Scholar
  4. 4.
    S.M. Sanip, A.F. Ismail, P.S. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Sep. Purif. Technol. 78, 208 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Chen, L. Dai, Mater. Today 16, 272 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan, Nano Lett. 4, 345 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S. S. Shigeki Hasegawa, Yoshihiro Shinozaki, Masahiro Imanishi, (2010)Google Scholar
  8. 8.
    G. Chen, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Carbon N. Y. 107, 433 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Hiraoka, A. Izadi-Najafabadi, T. Yamada, D.N. Futaba, S. Yasuda, O. Tanaike, K. Hata, Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2 200 m2 g – 1 surface area. Adv. Func. Mater. 20(3), 422–428 (2010)CrossRefGoogle Scholar
  10. 10.
    M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, V.K. Ksenevich, G. Niaura, D. Seliuta, I. Kasalynas, G. Valusis, Nanotechnology 23, 495714 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Liu, Dai, Hafner, Bradley, Boul, Lu, Iverson, Shelimov, Huffman, Rodriguez-Macias, Shon, Lee, Colbert, and Smalley. Science 280, 1253 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    J.W. Jang, C.E. Lee, C.J. Lee, Solid State Commun. 135, 683 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    D. Wu, L. Wu, W. Zhou, Y. Sun, M. Zhang, J. Polym. Sci. Part B Polym. Phys. 48, 479 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Zhang, M. Yudasaka, A. Koshio, C. Jabs, T. Ichihashi, S. Iijima, Appl. Phys. A 74, 7 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    C. Wang, S. Guo, X. Pan, W. Chen, X. Bao, J. Mater. Chem. 18, 5782 (2008)CrossRefGoogle Scholar
  17. 17.
    S.Y. Lee, D.-H. Kim, S.C. Choi, D.-J. Lee, J.Y. Choi, H.-D. Kim, Microporous Mesoporous Mater. 194, 46 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Pelalak, M. Baniadam, M. Maghrebi, Appl. Phys. A Mater. Sci. Process. 111, 951 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Maxwell, Oxford Clarendon Press 360 (1873)Google Scholar
  20. 20.
    R. Jin, Y.C. Cao, E. Hao, G.S. Métraux, G.C. Schatz, C.A. Mirkin, Nature 425, 487 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, R.H. Hauge, J. Phys. Chem. B 105, 8297 (2001)CrossRefGoogle Scholar
  22. 22.
    F. Xin, L. Li, Compos. Part A Appl. Sci. Manuf. 42, 961 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Susi, T. Pichler, P. Ayala, Beilstein J. Nanotechnol. 6, 177 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Deng, G. Zhao, Q. Xue, L. Chen, Y. Lu, Appl. Catal. B Environ. 99, 222 (2010)CrossRefGoogle Scholar
  25. 25.
    J.W. Niemantsverdriet, Diffraction and Extended X-Ray Absorption Fine Structure (EXAFS) (2007)Google Scholar
  26. 26.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Science 303, 62 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Saito, T. Yoshikawa, J. Cryst. Growth 134, 154 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Neda Ojaghi
    • 1
  • Maryam Mokhtarifar
    • 1
  • Zahra Sabaghian
    • 1
  • Hamed Arab
    • 1
  • Morteza Maghrebi
    • 1
  • Majid Baniadam
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations