Applied Physics A

, 124:324 | Cite as

Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica

  • R. Beuton
  • B. Chimier
  • J. Breil
  • D. Hébert
  • K. Mishchik
  • J. Lopez
  • P. H. Maire
  • G. Duchateau
Article
  • 67 Downloads
Part of the following topical collections:
  1. COLA2017

Abstract

The formation and the interaction of multiple cavities, induced by tightly focused femtosecond laser pulses, are studied using a developed numerical tool, including the thermo-elasto-plastic material response. Simulations are performed in fused silica in cases of one, two, and four spots of laser energy deposition. The relaxation of the heated matter, launching shock waves in the surrounding cold material, leads to cavity formation and emergence of areas where cracks may be induced. Results show that the laser-induced structure shape depends on the energy deposition configuration and demonstrate the potential of the used numerical tool to obtain the desired designed structure or technological process.

Notes

Acknowledgements

Vladimir Tikhonchuk and Jocelain Trela are acknowledged for fruitful discussions. The CEA and the Région Aquitaine (MOTIF Project) are acknowledged for supporting this work.

References

  1. 1.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, H. Misawa, Appl. Phys. B 77, 361 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    R.R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Gottmann, D. Wortmann, M. Hörstmann-Jungemann, Appl. Surf. Sci. 255, 5641 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Opt. Express 17, 9515 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, S. Nolte, Laser Photon. Rev. 6, 787 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, S. Nolte, Proc. SPIE 8972, 897214 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Buividas, M. Mikutis, S. Juodkazis, Prog. Quantum Electron. 38, 119 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, Optica 2, 329 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Hendricks, V.V. Matylitsky, M. Domke, H.P. Huber, Proc. SPIE 9740, 97401A (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolaï, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    L. Hallo, A. Bourgeade, V.T. Tikhonchuk, C. Mézel, J. Breil, Phys. Rev. B 76, 024101 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V.T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, G. Travaillé, Phys. Plasmas 15, 093504 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    K. Mishchik, G. Cheng, G. Huo, I.M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, R. Stoian, Opt. Exp. 24809, 18 (2010)Google Scholar
  19. 19.
    A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Optica 4, 951 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Opt. Express 15, 5674 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    D. Hébert, L. Hallo, L. Voisin, T. Desanlis, A. Galtié, B. Bicrel, C. Maunier, P. Mercier, G. Duchateau, J. Appl. Phys. 109, 123527 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N.M. Bulgakova, V.P. Zhukov, S.V. Sonina, Y.P. Meshcheryakov, J. Appl. Phys. 118, 233108 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Najafi, R. Massudi, A. Ajami, C.S.R. Nathala, W. Husinsky, A.S. Arabanian, J. Appl. Phys. 120, 153102 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    R. Beuton, B. Chimier, J. Breil, D. Hébert, P.H. Maire, G. Duchateau, J. Appl. Phys. 122, 203104 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M.L. Wilkins, Methods in Computational Physics, volume 3, chapter Calculation of Elastic-Plastic Flow (Academic Press, New York, 1964), pp 211–263Google Scholar
  27. 27.
    P.H. Maire, R. Abgrall, J. Breil, R. Loubere, B. Rebourcet, J. Comput. Phys. 235, 626 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Courvoisier, J. Zhang, M.K. Bhuyan, M. Jacquot, J.M. Dudley, Appl. Phys. A 112, 29 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, K. Miura, Opt. Express 21, 26921 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    A. Courvoisier, M.J. Booth, P.S. Salter, Appl. Phys. Lett. 109, 031109 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R.R. Thomson, C. Pépin, P. Gillet, Y. Cheng, Optica 3, 1285 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Irgens, Continuum Mechanics (Springer, New York, 2008)Google Scholar
  33. 33.
    R. von Mises, Math. Phys. 1, 582 (1913)Google Scholar
  34. 34.
    G. Kermouche, E. Barthel, D. Vandembroucq, P. Dubujet, Acta Mater. 56, 3222 (2008)CrossRefGoogle Scholar
  35. 35.
    D. Spenlé, R. Gourhant, Guide du calcul en mécanique (2003)Google Scholar
  36. 36.
    J. Breil, S. Galera, P.H. Maire, Comput. Fluids 46, 161 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J.C. Boettger, SESAME equation of state number 7386, fused quartz (Los Alamos National Laboratory Report LA-11488-MS, 1989)Google Scholar
  38. 38.
    A. Pedone, M.C. Menziani, A.N. Cormack, J. Phys. Chem. C 119, 25499 (2015)CrossRefGoogle Scholar
  39. 39.
    J.L. Fanchon, Guide de mecanique: Sciences et technologies industrielles (Nathan, Paris, 2001)Google Scholar
  40. 40.
    F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, S. Nolte, Laser Photon. Rev. 10, 327 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre Lasers Intenses et ApplicationsUniversité de Bordeaux-CNRS-CEA, UMR 5107TalenceFrance
  2. 2.CEA/CESTALe Barp cedexFrance
  3. 3.Amplitude SystemesPessacFrance

Personalised recommendations