Applied Physics A

, 124:285 | Cite as

Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

Article
  • 34 Downloads

Abstract

This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11702041). The authors also would like to thank the anonymous reviewers for the helpful comments to improve the quality of the paper.

References

  1. 1.
    W.-Y. Chang, T.-H. Fang, C.-I. Weng, S.-S. Yang, Appl. Phys. A Mater. Sci. Process. 102, 705–711 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    T.Y. Kwon, Y.B. Kim, K. Eom, D.S. Yoon, H.L. Lee, T.S. Kim, Appl. Phys. A Mater. Sci. Process. 88, 627–632 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    L. Bouzaiene, S. Rekaya, H. Sghaier, L. Sfaxi, H. Maaref, Appl. Phys. A Mater. Sci. Process. 80, 295–299 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J.H. Davies, J. Appl. Phys. 84, 1358–1365 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Downes, D.A. Faux, E.P. O’Reilly, J. Appl. Phys. 81, 6700–6702 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    E. Pan, J. Appl. Phys. 91, 6379–6387 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    E. Pan, B. Yang, J. Appl. Phys. 93, 2435–2439 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    E. Pan, F. Han, J.D. Albrecht, J. Appl. Phys. 98, 013534 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    H.J. Chu, E. Pan, J.J. Ramsey, J. Wang, C.X. Xue, Int. J. Solids Struct. 48, 673–679 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Jogai, J. Appl. Phys. 90, 699–704 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-M. Liu, Z.-Y. Yu, X.-M. Ren, Z.-H. Xu, Chin. Phys. B 17, 3471–3478 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    F. Boxberg, N. Sondergaard, H.Q. Xu, Adv. Mater. 24, 4692–4706 (2012)CrossRefGoogle Scholar
  13. 13.
    M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57, 291–323 (1975)CrossRefGoogle Scholar
  14. 14.
    M.E. Gurtin, J. Weissmuller, F. Larche, Philos. Mag. A 78, 1093–1109 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    R.E. Miller, V.B. Shenoy, Nanotechnology, 11, 139 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    P. Sharma, S. Ganti, Phys. Status Solidi B Basic Res. 234, R10–R12 (2002)CrossRefGoogle Scholar
  17. 17.
    H.M. Shodja, H. Ahmadzadeh-Bakhshayesh, M.Y. Gutkin, Int. J. Solids Struct. 49, 759–770 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Ahmadzadeh-Bakhshayesh, M.Y. Gutkin, H.M. Shodja, Int. J. Solids Struct. 49, 1665–1675 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, W. Ye, E. Physica, Low Dimens. Syst. Nanostruct. 89, 5–9 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Ye, B. Chen, J. Cryst. Growth 410, 59–62 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    W. Ye, A. Ougazzaden, M. Cherkaoui, Int. J. Solids Struct. 50, 4341–4348 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Ye, B. Paliwal, A. Ougazzaden, M. Cherkaoui, Philos. Mag. 93, 2497–2513 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    T. Mura, Micromechanics of Defects in Solids, (Martinus Nijhoff Publishers, Dordrecht, 1987)CrossRefMATHGoogle Scholar
  24. 24.
    J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids, (Wiley, Hoboken, 2006)CrossRefGoogle Scholar
  25. 25.
    R. Dingreville, J. Qu, Acta Mater. 55, 141–147 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Dingreville, J. Qu, J. Mech. Phys. Solids 56, 1944–1954 (2008)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Dingreville, J. Qu, Comput. Mater. Sci. 46, 83–91 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Dingreville, J.M. Qu, M. Cherkaoui, J. Mech. Phys. Solids 53, 1827–1854 (2005)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    V.B. Shenoy, Phys. Rev. B 71, 094104–094111 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    W. Ye, B. Chen, Mater. Lett. 141, 245–247 (2015)CrossRefGoogle Scholar
  31. 31.
    A.F. Bower, Applied Mechanics of Solids, (CRC Press, Boca Raton, 2010)Google Scholar
  32. 32.
    J.N. Reddy, An Introduction to Continuum Mechanics, (Cambridge University Press, Cambridge, 2008)Google Scholar
  33. 33.
    P. Sharma, S. Ganti, J. Appl. Mech. 71, 663–671 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J. Xin, Y. Zheng, E. Shi, Appl. Phys. Lett. 91, 112902 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    S.Q. Wang, H.Q. Ye, Phys. Status Solidi B Basic Res. 240, 45–54 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Aerospace EngineeringChongqing UniversityChongqingChina

Personalised recommendations