Applied Physics A

, 124:278 | Cite as

Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

Article
  • 91 Downloads

Abstract

Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the ‘Die-Met’ states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ε0 > εre > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

Notes

Acknowledgements

We acknowledge funding from the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (DP170100131).

References

  1. 1.
    K. Sokolowski-Tinten, D. Linde, Generation of dense electron–hole plasmas in silicon. Phys. Rev. B. 61, 2643–2650 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T. Winkler, L. Haahl-Lillevang, C. Sarpe, B. Zielinski, N. Götte, A. Senftleben, P. Balling, T. Baumert, Laser amplification in excited dielectrics. Nat. Phys. 4265, 1–6 (2017).  https://doi.org/10.1038/NPHYS4265.Google Scholar
  3. 3.
    E.G. Gamaly, A.V. Rode, Transient optical properties of dielectrics and semiconductors excited by an ultra-short laser pulse. JOSA B. 31, 36–43 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Forsterling, The Propagation, with Oblique Incidence, of Electromagnetic Waves in a Stratified Medium under the Influence of a Magnetic Field. In: Archiv der elektrischen Übertragung. Bd. 3 (1949). S. 115–120Google Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continues Media. (Pergamon Press, Oxford, 1984)Google Scholar
  6. 6.
    V.L. Ginzburg, The propagation of Electromagnetic Wave in Plasma. (Pergamon, New York, 1964)Google Scholar
  7. 7.
    N.G. Denisov, On a singularity of the field of an electro-magnetic wave propagated in an inhomogeneous plasma. Sov. Phys. JETP. 4, 544 (1957)MATHGoogle Scholar
  8. 8.
    I. Liberal, A.M. Mahmoud, Y. Li, B. Edwards, N. Engheta, Photonic doping of epsilon-near-zero media. Science. 355, 1058–1062 (10 March 2017)Google Scholar
  9. 9.
    E.G. Gamaly, A.V. Rode, Ultra-fast re-structuring the electronic landscape of transparent dielectrics: new material states (Die-Met), arXiv:1708.07630, (2017)Google Scholar
  10. 10.
    E.G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications. (Pan Stanford Publishing, Singapore, 2011)Google Scholar
  11. 11.
    P.B. Allen, Misbehaviour of metals. Nature. 405, 1007 (2000)CrossRefGoogle Scholar
  12. 12.
    Ch Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 1996)MATHGoogle Scholar
  13. 13.
    R. C. Weast, M. J. Astle eds. CRC Handbook of Chemistry and Physics,, 60th edn. (CRC Press, Boca Raton, 1980), p. D-56 (S Refractory materials)Google Scholar
  14. 14.
    L.V. Keldysh, Ionization in the field of strong electro-magnetic wave. Sov. Phys. JETP. 20, 1307–1314 (1965)MathSciNetGoogle Scholar
  15. 15.
    P. Lautenschlager, P.B. Allen, M. Cardona, Temperature dependence of band gaps in Si and Ge. Phys. Rev. B. 31, 2163–2171 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    O.P. Uteza, E.G. Gamaly, A.V. Rode, M. Samoc, B. Luther-Davies, Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting. Phys. Rev. B. 70, 054108 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Rode, D. Boschetto, T. Garl, A. Rousse, Transient dielectric function of fs-laser excited bismuth”, in “Ultrafast Phenomena XVI”, ed. by P. Corkum, S. de Silvestri, K. A. Nelson, E. Riedle, R. W. Schoenlein (Springer, New York, 2009)Google Scholar
  18. 18.
    E.G. Gamaly, A.V. Rode, Ultrafast electronic relaxation in superheated bismuth. New J. Phys. 15, 013035 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    T. Frigge, B. Hafke, T. Witte, B. Krenzer, C. Streubühr, A. Samad Syer, V. Mikšić Trontl, I. Avigo, P. Zhou, M. Ligges, D. von der Linde, U. Bovensiepen, M. Horn-von, S. Hoegen, A. Wippermann, S. Lücke, U. Sanna, W.G. Gerstmann, Schmidt, Optically excited structural transition in atomic wires on surfaces at the quantum limit.”. Nature. 544, 207–211 (2017).  https://doi.org/10.1038/nature21432 ADSCrossRefGoogle Scholar
  20. 20.
    L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier, High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams. Sci. Rep. 6, 34286 (2016).  https://doi.org/10.1038/srep34286 ADSCrossRefGoogle Scholar
  21. 21.
    E.G. Gamaly, A.V. Rode, L. Rapp, R. Giust, L. Furfaro, P.A. Lacourt, J.M. Dudley, F. Courvoisier, S. Juodkazis, Interaction of the ultra-short Bessel beam with transparent dielectrics: Evidence of high-energy concentration and multi-TPa pressure, arXiv:1708.07630, (2017)Google Scholar
  22. 22.
    V.B. Gilden’burg, Resonance Properties of inhomogeneous plasma structures. Sov. Phys. JETP. 18, 1359 (1964)Google Scholar
  23. 23.
    W.L. Kruer, The physics of Laser Plasma Interactions. (Adison-Wesley, Boston, 1987)Google Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Oxford, Oxford, 1980)MATHGoogle Scholar
  25. 25.
    E.G. Gamaly, V.T. Tikhonchuk, Plane polarisation rotation of electro-magnetic wave in inhomogeneous magnetized plasma. Sov. Plasma Phys. 13, 1527–1531 (1987)Google Scholar
  26. 26.
    M.V. Berry, The geometric phase. Sci. Am. 259, 26–34 (1988)CrossRefMATHGoogle Scholar
  27. 27.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Hydrodynamic simulation of subpicosecond laser interaction with solid density matter. Phys. Rev. E. 62, 1202 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laser Physics Centre, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations