Applied Physics A

, 124:275 | Cite as

Frequency- and doping-level influence on electric and dielectric properties of PolySi/SiO2/cSi (MOS) structures

  • N. Doukhane
  • B. Birouk


The electric and dielectric characteristics of PolySi/SiO2/cSi (MOS) structure, such as series resistance (Rs), dielectric constants (ɛ′) and (ɛ″), dielectric losses (tan δ), and the ac electric conductivity (σac), were studied in the frequency range 100 kHz–1 MHz for various doping levels and two thicknesses for the polysilicon layer (100 and 175 nm). The experimental results show that the C and G/ω characteristics are very sensitive to the frequency due to the presence of interface states. Series resistance Rs is deduced from C and G/ω measurements and is plotted as a function of the frequency for various doping levels. It is found to decrease with frequency and doping level. To determine \(~{\varepsilon ^\prime }\), ε″, tan δ, and \({\sigma _{{\text{ac}}}}\), the admittance technique was used. An interesting behavior of the constants, \(~{\varepsilon ^\prime }\) and ε″, was noticed. The \(~{\varepsilon ^\prime }\) values fit led to relations between \(~{\varepsilon ^\prime }\) and the frequency, on one hand, and between \(~{\varepsilon ^\prime }\) and the electric conductivity of the polysilicon layers on the other. These relations make it possible to interpolate directly between two experimental points for a given frequency. The analysis of the results shows that the values of \(~{\varepsilon ^\prime }\), ε″, and tan δ decrease with increasing frequency. This is due to the fact that in the region of low frequencies, interfacial polarization occurs easily, and the interface states between Si and SiO2 contribute to the improvement of the dielectric properties of the PolySi/SiO2/cSi structures. The study also emphasizes that the ac electric conductivity increases with the increase in frequency and doping level; this causes to the reduction in series resistance.



The authors are grateful to Pr Jean-Pierre Raskin from ICTEAM-UCL (Belgium) for providing technical assistance and financial support to bring to a successful conclusion this research work. The authors would like to thank also the ICTEAM staff and particularly Mrs Ester Tooten and Mr. Christian Renaux for having kindly performed the different processes in sample preparation in the clean room facilities named WINFAB.


  1. 1.
    E.H. Nicollian, A. Goetzberger. Appl. Phys. Lett. 7, -216 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    P. Chattopadhyay, A.N. Daw, Solid State Electron. 29, 555–560 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    A. Tataroglu, S. Altındal, Vacuum. 82, 1203–1207 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology. Wiley, New York (1982)Google Scholar
  5. 5.
    R. Castagne, A. Vapaille, Surf. Sci. 28, 157 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 2256–2260 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Uslu, S. Altındal, U. Aydemir, I. Dokme, I.M. Afandiyeva, J. Alloys Compd. 503, 96–102 (2010)CrossRefGoogle Scholar
  8. 8.
    M.K. Hudait, S.B. Krupanidhi, Solid-State Electron. 44, 1089–1097 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    H. Xiao, S. Huang, Mater. Sci. Semicond. Process. 13, 395–399 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81, 140–149 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Karatas, A. Turut, S. Altındal, Radiat. Phys. Chem. 78, 130–134 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Stat. Sol. 199(3), 507 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    N. Tugluoglu, F. Yakuphanoglu, S. Karadeniz, Phys. B. 393, 56–60 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967)CrossRefGoogle Scholar
  15. 15.
    O. Pakma, N. Serin, T. Serin, S. Altindal, J Appl Phys. 104, 014501 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)Google Scholar
  17. 17.
    P. Anu, S. Thomas, R. Nisha, K.R. Kumar, Pure Appl. Phys. 53, 464–469 (2015)Google Scholar
  18. 18.
    A. Tataroglu, I. Yucedag, S. Altındal, Microelectron. Eng. 84, 180 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Gokçen, H. Altuntas, Phys. B. 404, 4221–4224 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Karatas, F. Yakuphanoglu, F.M. Amanullah, Phys. Chem. Solids. 73, 46–51 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S. Karatas, A. Turut, Microelectron. Reliab. 50, 351 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Chelkowski, Dielectric Physics. Elsevier, Amsterdam (1980)Google Scholar
  23. 23.
    S. Kar, R.L. Narasimhan, J. Appl. Phys. 61(12), 5353–5359 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    D. Maurya, J. Kumar, Shripal, J. Phys. Chem. Solids. 66, 1614–1620 (2005)Google Scholar
  25. 25.
    M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, J. Phys. Chem. Solids. 65, 1121–1125 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    S.P. Szu, C.Y. Lin, Mater. Chem. Phys. 82, 295 (2003)CrossRefGoogle Scholar
  27. 27.
    A.S.M.S. Rahman, M.H. Islam, C.A. Hogarth, Int. J. Electron. 62(2), 167–179 (1987)CrossRefGoogle Scholar
  28. 28.
    B. Tataroglu, S. Altındal, A. Tataroglu, Microelectron. Eng. 83 (2006)Google Scholar
  29. 29.
    A.A. Sattar, S.A. Rahman, Phys. State Sol. 200(2), 415–422 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    K.S. Moon, H.D. Choi, A.K. Lee, K.Y. Cho, H.G. Yoon, K.S. Suh, J. Appl. Polym. Sci. 77 (2000)Google Scholar
  31. 31.
    Z. Jiwei, Y. Xi, W. Mingzhong, Z. Liangying, J. Phys. D Appl. Phys. 34, 1413 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    I. Dokme, S. Altındal, M. Gokcen, Microelectron. Eng. 85, 1910–1914 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Tataroğlu, Optoelectron. Adv. Mater. 13, 940–945 (2011)Google Scholar
  34. 34.
    R. Ertuğrul, A. Tataroğlu, Chin. Phys. Lett. 29, 077304 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    M.M.A. Kader, M.Y. Elzayat, T.R. Hammad, A.I. Aboud, H. Abdelmonem, Phys. Scr. 83, 035705 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Renewable Energies Laboratory (LER), Electronics DepartmentFST, Jijel UniversityJijelAlgeria

Personalised recommendations