Applied Physics A

, 124:253 | Cite as

New generation of α-MnO2 nanowires @PDMS composite as a hydrogen gas sensor

  • Seyedeh Mehri Hamidi
  • Alireza Mosivand
  • Mina Mahboubi
  • Hadi Arabi
  • Narin Azad
  • Murtada Riyadh Jamal
Article
  • 58 Downloads

Abstract

New hydrogen gas sensor has been prepared by α-MnO2 nanowires in polydimethylsiloxane matrix. For this purpose, the high aspect ratio α-MnO2 nanowires has been prepared by the aid of hydrothermal method and then dispersed into poly-dimethyl siloxane polymer media. For gas sensing, the samples have been exposed under different gas concentrations from 0 to 5%. The sensor responses have been examined by normalized ellipsometric parameter with respect to the chamber filled with N2 Gas. Our results indicate linear behavior of resonance wavelength in ellipsometric parameter as a function of gas concentrations which can open a new insight for the sample’s capability to hydrogen gas sensing applications.

References

  1. 1.
    H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.P. Loock, Chemical sensing using fiber cavity ring-down spectroscopy. Sensors 10, 1716 (2012)CrossRefGoogle Scholar
  2. 2.
    E. Vargas-Rodr´ıguez, H.N. Rutt, Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry–Perot interferometer. Sens. Actuators B 137, 410 (2009)CrossRefGoogle Scholar
  3. 3.
    R.R. Rye, A.J. Ricco, Ultrahigh vacuum studies of Pd metal-insulator-semiconductor diode H2 sensors. J. Appl. Phys. 62, 1084 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    S. Shukla, P. Zhang, H.J. Cho, L. Ludwig, S. Seal, Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor. Int. J. Hydrogen Energy 33, 470 (2008)CrossRefGoogle Scholar
  5. 5.
    S.M. Hamidi, R. Ramezani, A. Bananej, Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack. Opt. Mater. 53, 201 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    N.R. Fong, P. Berini, R.N. Tait, Modeling and design of hydrogen gas sensors based on a membrane-supported surface Plasmon waveguide. Sens. Actuators B 161, 285 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Gu, H. Zeng, Y.B. Zhu, Q. Yang, L.K. Ang, S. Zhuang, Single crystal Pd and its alloy nanowires for Plasmon propagation and highly sensitive hydrogen detection. Adv. Opt. Mater. 2, 189 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L Zhang, MnO -based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Tiana, L. Yang, X. Qing, K. Yu, X. Wang, Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sens. Actuators B 207, 34 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Uedaa, A.I. Kolesnikov, H. Koyanaka, Sensoring hydrogen gas concentration using electrolyte made of proton conductive manganese dioxide. Sens. Actuators B 155, 893 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Ueda, Y. Tokuda, T. Yoko, K. Takeuchi, A.I. Kolesnikov, H. Koyanak, Electrochemical property of proton-conductive manganese dioxide for sensoring hydrogen gas concentration. Solid State Ionics 225, 282 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Koyanaka, Y. Ueda, K. Takeuchi, A.I. Kolesnikov, Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sens. Actuators B 183, 641 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Ueda, Y. Tokuda, T. Yoko, K. Takeuchi, A.I. Kolesnikov, H. Koyanaka, Elec-trochemical property of proton-conductive manganese dioxide for sensoring hydrogen gas concentration. Solid State Ionics 225, 282 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, High aspect ratio -MnO2 nanowiresand sensor performance for explosive gases. J. Appl. Phys. 114, 073513 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X. Tiana, L. Yang, X. Qinga, K. Yua, X. Wang, Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sens. Actuators B 207, 34 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, High aspect ratio b-MnO2 nanowires and sensor performance for explosive gases. J. Appl. Phys. 114, 073513 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Musil, B. Choi, A. Tsutsumi, Morphology and electrochemical properties of α-, β-, γ-, and δ-MnO2 synthesized by redox method. J. Electrochem. Soc. 162, 2058 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Tang, X. Shan, S. Li, H. Liu, X. Wu, Y. Chen, Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods. Mater. Lett. 132, 317 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Sohrabi, S.M. Hamidi, Optical detection of brain activity using plasmonic ellipsometry technique. Sens. Actuators B 251, 153 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Seyedeh Mehri Hamidi
    • 1
  • Alireza Mosivand
    • 1
  • Mina Mahboubi
    • 1
  • Hadi Arabi
    • 2
  • Narin Azad
    • 2
  • Murtada Riyadh Jamal
    • 2
  1. 1.Magneto-plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Renewable Energies, Magnetism and Nanotechnology Research Laboratory, Physics Department, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations