Applied Physics A

, 124:268 | Cite as

Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

  • Z.-Y. Hong
  • T. Iino
  • H. Hagihara
  • T. Maeno
  • K. Okano
  • R. Yasukuni
  • Y. Hosokawa
Article
  • 42 Downloads

Abstract

A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

Notes

Acknowledgements

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

References

  1. 1.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577–644 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 12 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 8 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Takanori, Y. Hosokawa, Appl. Phys. Express 3, 107002 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Hosokawa, M. Yashiro, T. Asahi, H. Masuhara, J. Photochem. Photobiol. A 142, 197–207 (2001)CrossRefGoogle Scholar
  6. 6.
    T. Juhasz, F.H. Loesel, C. Horvath, R.M. Kurtz, G. Mourou, in Ultrafast Phenomena XI. (Springer, Berlin Heidelberg, 1998)Google Scholar
  7. 7.
    G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, W. Ertmer, J. Opt. A Pure Appl. Opt. 2(1), 59 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, I. Johannsen, Appl. Phys. B 69(1), 3–17 (1999)ADSGoogle Scholar
  9. 9.
    R. Le Harzic, K. König, C. Wüllner, K. Vogler, C. Dnitzky, J. Refract. Surg. 25, 383–389 (2009)CrossRefGoogle Scholar
  10. 10.
    W. Sekundo, K.S. Kunert, M. Blum, J. Ophthalmol. 95, 335–339 (2011)Google Scholar
  11. 11.
    S. Vogel, N. Freidank, S.P.I.E. Linz, Newsroom.  https://doi.org/10.1117/2.1201511.006157 (2016)Google Scholar
  12. 12.
    T. Hirashima, Y. Hosokawa, T. Iino, M. Nagayama, Biol. Open. 2, 660–666 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Hosokawa, H. Ochi, T. Iino, A. Hiraoka, M. Tanaka, PLoS One 6(11), e27677 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Hosokawa, M. Hagiyama, T. Iino, Y. Murakami, A. Ito, PNAS 108(5), 1777–1782 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    T.H. Wu, Y. Chen, S.Y. Park, J. Hong, T. Teslaa, J.F. Zhong, P.Y. Chiou, Lab Chip. 12(7), 1378–1383 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Maezawa, K. Okano, M. Matsubara, H. Masuhara, Y. Hosokawa, Biomed. Microdevices 13(1), 117–122 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Hosokawa, Y. Sakamoto, S.N. Kudoh, Y. Hosokawa, T. Taguchi, Appl. Phys. A 110(3), 607–612 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    I. Takanori, Y. Hosokawa, J. Appl. Phys. 112, 066106 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Noack, A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    H. Fukumura, H. Masuhara, Chem. Phys. Lett. 221, 373 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    F.J. Schmitt, G. Renger, T. Friedrich, V.D. Kreslavski, S.K. Zharmukhamedov, D.A. Los, S.I. Allakhverdiev, Biochim. Biophys. Acta (BBA) Bioenerg. 1837, 835–848 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Materials ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations