Applied Physics A

, 124:241 | Cite as

Selective rear side ablation of thin nickel–chromium-alloy films using ultrashort laser pulses

  • Linda Pabst
  • Frank Ullmann
  • Robby Ebert
  • Horst Exner
Article
  • 74 Downloads
Part of the following topical collections:
  1. COLA2017

Abstract

In recent years, the selective laser structuring from the transparent substrate side plays an increased role in thin film processing. The rear side ablation is a highly effective ablation method for thin film structuring and revels a high structuring quality. Therefore, the rear side ablation of nickel–chromium-alloy thin films on glass substrate was investigated using femtosecond laser irradiation. Single and multiple pulses ablation thresholds as well as the incubation coefficient were determined. By irradiation from the transparent substrate side at low fluences a cracking or a partly delamination of the film could be observed. By increasing the fluence the most part of the film was ablated, however, a very thin film remained at the interface of the glass substrate. This thin remaining layer could be completely ablated by two pulses. A further increase of the pulse number had no influence on the ablation morphology. The ablated film was still intact and an entire disc or fragments could be collected near the ablation area. The fragments showed no morphology change and were still in solid state.

Notes

Acknowledgements

The authors thank the European Social Fund (ESF) for funding the Project ULTRALAS No. 8231016.

References

  1. 1.
    D. Bartl, A. Michalowski, M. Hafner et al., Appl. Phys. A 110, 227–233 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    G. Heise, M. Domke, J. Konrad et al., J. Phys. D 45, 315303 (2012)CrossRefGoogle Scholar
  3. 3.
    W.J. Wang, K.D. Wang, G.D. Jiang et al., Proc. IMechE 255, 520–527 (2010)Google Scholar
  4. 4.
    B.N. Chichkov, C. Momma, S. Nolte et al., Appl. Phys. A 63, 109–115 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    I. Peshko, Laser Pulses—Theory, Technology, and Applications (InTech, Rijeka, 2012)CrossRefGoogle Scholar
  6. 6.
    T.E. Itina, Laser Ablation—From Fundamentals to Application (InTech, Rijeka, 2017)CrossRefGoogle Scholar
  7. 7.
    G. Heise, J. Konrad, S. Sarrach et al., Proc. SPIE 7925, 792511 (2011)CrossRefGoogle Scholar
  8. 8.
    H.P. Huber, M. Englmaier, C. Hellwig et al., Proc. SPIE 7203, 72030 R (2009)CrossRefGoogle Scholar
  9. 9.
    W. Wang, G. Jiang, X. Mei et al., Appl. Surf. Sci. 256, 3612–3617 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G. Heise, M. Englmaier, C. Hellwig et al., Appl. Phys. A 102, 173–178 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Domke, S. Rapp, M. Schmidt et al., Appl. Phys. A 109, 409–420 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Sotrop, A. Kersch, M. Domke et al., Appl. Phys. A 113, 397–411 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hermann, N.P. Harder, R. Brendel et al., Appl. Phys. A 99, 151–158 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    W. Wang, X. Mei, G. Jiang et al., Opt. Laser Technol. 44, 153–158 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    L. Pabst, R. Ebert, H. Exner, Phys. Procedia 83, 104–113 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    P. Nasch, Bull. Alloy Ph. Diagr. 7, 466–476 (1986)CrossRefGoogle Scholar
  17. 17.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Linda Pabst
    • 1
  • Frank Ullmann
    • 1
  • Robby Ebert
    • 1
  • Horst Exner
    • 1
  1. 1.Hochschule MittweidaMittweidaGermany

Personalised recommendations