Advertisement

Applied Physics A

, 124:217 | Cite as

Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

  • T. V. KononenkoEmail author
  • C. Freitag
  • M. S. Komlenok
  • R. Weber
  • T. Graf
  • V. I. Konov
Article
  • 223 Downloads

Abstract

Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

Notes

Acknowledgements

This work was funded by the Russian Foundation of Basic Research (Grant 15-02-91347) and by the German Research Foundation (DFG) within the Project “Entrance” (Grant GR 3172/17 − 1).

References

  1. 1.
    W. Koenig, C. Wulf, P. Grass, H. Willerchied, Ann. CIRP. 34, 537 (1985)CrossRefGoogle Scholar
  2. 2.
    D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Intern. J. Mach. Tools Manuf. 48, 1464 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Negarestani, L. Li, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227, 1755 (2013)CrossRefGoogle Scholar
  4. 4.
    N.S. Hu, L.C. Zhang, J. Mater. Proces. Technol. 152, 333 (2004)CrossRefGoogle Scholar
  5. 5.
    J.P. Davim, P. Reis, J. Mater. Proces. Technol. 160, 160 (2005)CrossRefGoogle Scholar
  6. 6.
    D. Shanmugam, T. Nguyen, J. Wang, Compos. Part A Appl. Sci. Manuf. 39, 923 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Shanmugam, F. Chen, E. Siores, M. Brandt, Compos. Struct. 57, 289 (2002)CrossRefGoogle Scholar
  8. 8.
    P. Sheng, G. Chryssolouris, J. Compos. Mater. 29, 96 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    R. Weber, M. Hafner, A. Michalowksi, T. Graf, Phys. Proced. 12, 302 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Salama, L. Li, P. Mativenga, D. Whitehead, Appl. Phys. A. 122, 497 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    T.V. Kononenko, C. Freitag, M.S. Komlenok, V. Onuseit, R. Weber, T. Graf, V.I. Konov, J. Appl. Phys. 118, 103105 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Wolynski, H. Haloui, P. Mucha, A. Gleiter, P. French, R. Weber, T. Graf, ICALEO, Los Angeles (2010)Google Scholar
  13. 13.
    R. Weber, C. Freitag, T.V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, Phys. Proced. 39, 137 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Z.L. Li, H.Y. Zheng, G.C. Lim, P.L. Chu, L. Li, Compos. Part A Appl. Sci. Manuf. 41, 1403 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Stock, M.F. Zaeh, M. Conrad, Phys. Proced. 39, 161 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express. 22, 11312 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, V.I. Konov, Opt. Express. 25, 3966 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    D.E. Kline, J. Polym. Sci. 50, 441 (1961)ADSCrossRefGoogle Scholar
  19. 19.
    Rock West Composites, T700S Fiber Data Sheet. https://www.rockwestcomposites.com/media/wysiwyg/T700SDataSheet.pdf
  20. 20.
    C. Pradere, J.C. Batsale, J.M. Goyhénèche, R. Pailler, S. Dilhaire, Carbon. 47, 737 (2009)CrossRefGoogle Scholar
  21. 21.
    C.T. Pan, H. Hocheng, J. Mater. Eng. Perform. 7, 751 (1998)CrossRefGoogle Scholar
  22. 22.
    C. Freitag, R. Weber, T. Graf, Opt. Express. 22, 1474 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    C. Freitag, L. Alter, R. Weber, T. Graf, Proc. of Lasers in Manufacturing 2015, München (2015)Google Scholar
  24. 24.
    G.S. Springer, S.W. Tsai, J. Compos. Mater. 1, 166 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • T. V. Kononenko
    • 1
    • 2
    Email author
  • C. Freitag
    • 3
  • M. S. Komlenok
    • 1
    • 2
  • R. Weber
    • 3
  • T. Graf
    • 3
  • V. I. Konov
    • 1
    • 2
  1. 1.Natural Sciences CenterGeneral Physics InstituteMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Institut für Strahlwerkzeuge (IFSW)Universität StuttgartStuttgartGermany

Personalised recommendations