Applied Physics A

, 124:219 | Cite as

Influence of the growth temperature on the Si-V photoluminescence in diamond thin films

  • Kateřina Dragounová
  • Tibor Ižák
  • Alexander Kromka
  • Zdeněk Potůček
  • Zdeněk Bryknar
  • Štěpán Potocký
Rapid communication
  • 81 Downloads

Abstract

The influence of growth temperature (350 ÷ 1100 °C) on the intensity of Si-V colour centres photoluminescence was studied in diamond thin films. The films were grown by a microwave plasma enhanced chemical vapour deposition system. The film quality and surface morphology were characterised by Raman spectroscopy and scanning electron microscopy, respectively. For selected samples, the temperature behaviour of steady-state photoluminescence emission spectra was studied within the range 11 ÷ 300 K as well. The photoluminescence properties are related to the film growth temperature. We found that 800 °C is the optimal growth temperature, at which the highest intensity of the Si-V centre photoluminescence was observed. For all the samples, the blue shift in the position of the Si-V centre photoluminescence zero-phonon line is observed with decreasing temperature, which is attributed to the effects of lattice contraction and quadratic electron–phonon coupling. The zero-phonon line narrowing is discussed regarding vibrations of the perturbed lattice.

Notes

Acknowledgements

This work was supported by the Grant agency of the Czech Republic 15-22102J (SP) and grant agency of Czech Technical University in Prague SGS16/244/OHK4/3T/14.

References

  1. 1.
    J. Mort, Mater. Des. 11, 115 (1990)CrossRefGoogle Scholar
  2. 2.
    I. Aharonovich, E. Neu, Adv. Opt. Mater. 2, 911 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Iakoubovskii, G.J. Adriaenssens, M. Nesladek, J. Phys. Condens. Matter. 12, 189 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, New J. Phys. 13, 025012 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    E. Neu, M. Agio, C. Becher, Opt. Express. 20, 19956 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    T.D. Merson, S. Castelletto, I. Aharonovich, A. Turbic, T.J. Kilpatrick, A.M. Turnley, Opt. Lett. 38, 4170 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    E. Neu, R. Albrecht, M. Fischer, S. Gsell, M. Schreck, C. Becher, Phys. Rev. B. 85, 245207 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Smith, M.C. Mancini, S. Nie, Nat. Nanotechnol. 4, 710 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V. Métillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, O. Benson, New J. Phys. 16, 023021 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M. Amaral, P.S. Gomes, M.A. Lopes, J.D. Santos, R.F. Silva, M.H. Fernandes, Acta Biomater. 5, 755 (2009)CrossRefGoogle Scholar
  11. 11.
    M.G. Donato, G. Faggio, G. Messina, S. Santangelo, M. Marinelli, E. Milani, G. Pucella, G. Verona-Rinati, Diam. Relat. Mater. 13, 923 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    V.S. Sedov, I.I. Vlasov, V.G. Ralchenko, A.A. Khomich, V.I. Konov, A.G. Fabbri, G. Conte, Bull. Lebedev Phys. Inst. 38, 291 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    I. Sakaguchi, M. Nishitani-Gamo, K.P. Loh, H. Haneda, S. Hishita, T. Ando, Appl. Phys. Lett. 71, 629 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    S. Singh, S.A. Catledge, J. Appl. Phys. 113, 044701 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T.Y. Ko, Y.L. Liu, K.W. Sun, Y.J. Lin, S.-C. Fong, I.N. Lin, N.H. Tai, Diam. Relat. Mater. 35, 36 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Singh, V. Thomas, D. Martyshkin, V. Kozlovskaya, E. Kharlampieva, S.A. Catledge, Nanotechnology. 25, 045302 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Song, H. Li, F. Lin, L. Wang, H. Wu, Y. Yang, Cryst. Eng. Comm. 16, 8356 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Riedrich-Möller, C. Arend, C. Pauly, F. Mücklich, M. Fischer, S. Gsell, M. Schreck, C. Becher, Nano Lett. 14, 5281 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A. Gali, J.R. Maze, Phys. Rev. B. 88, 235205 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    U.F.S. D’Haenens-Johansson, A.M. Edmonds, B.L. Green, M.E. Newton, G. Davies, P.M. Martineau, R.U.A. Khan, D.J. Twitchen, Phys. Rev. B. 84, (2011)Google Scholar
  21. 21.
    L.J. Rogers, K.D. Jahnke, M.W. Doherty, A. Dietrich, L.P. McGuinness, C. Müller, T. Teraji, H. Sumiya, J. Isoya, N.B. Manson, F. Jelezko, Phys. Rev. B. 89, (2014)Google Scholar
  22. 22.
    E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, C. Becher, New J. Phys. 15, 043005 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    K.D. Jahnke, A. Sipahigil, J.M. Binder, M.W. Doherty, M. Metsch, L.J. Rogers, N.B. Manson, M.D. Lukin, F. Jelezko, New J. Phys. 17, 043011 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M. Füner, C. Wild, P. Koidl, Appl. Phys. Lett. 72, 1149 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    A. Kromka, Š. Potocký, J. Čermák, B. Rezek, J. Potměšil, J. Zemek, M. Vaněček, Diam. Relat. Mater. 17, 1252 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    L. Bergman, B.R. Stoner, K.F. Turner, J.T. Glass, R.J. Nemanich, J. Appl. Phys. 73, 3951 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Š. Potocký, T. Ižák, M. Varga, A. Kromka, Phys. Status Solidi B. 252, 2580 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Petherbridge, P.W. May, S.R.J. Pearce, K.N. Rosser, M.N.R. Ashfold, J. Appl. Phys. 89, 1484 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    O. A. Williams ed. Nanodiamond (Royal Society of Chemistry, Cambridge, 2014)Google Scholar
  30. 30.
    V. Ralchenko, L. Nistor, E. Pleuler, A. Khomich, I. Vlasov, R. Khmelnitskii, Diam. Relat. Mater. 12, 1964 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    R. Pfeiffer, H. Kuzmany, N. Salk, B. Günther, Appl. Phys. Lett. 82, 4149 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A.C. Ferrari, J. Robertson, Phys. Rev. B. 63, (2001)Google Scholar
  33. 33.
    I.I. Vlasov, E. Goovaerts, V.G. Ralchenko, V.I. Konov, A.V. Khomich, M.V. Kanzyuba, Diam. Relat. Mater. 16, 2074 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Grudinkin, N.A. Feoktistov, K.V. Bogdanov, M.A. Baranov, A.V. Baranov, A.V. Fedorov, V.G. Golubev, Semiconductors. 48, 268 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    I. Kiflawi, G. Sittas, H. Kanda, D. Fisher, Diam. Relat. Mater. 6, 146 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Remes, A. Kromka, J. Potmesil, M. Vanecek, Phys. Status Solidi A. 205, 2158 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    A. Dietrich, K.D. Jahnke, J.M. Binder, T. Teraji, J. Isoya, L.J. Rogers, F. Jelezko, New J. Phys. 16, 113019 (2014)CrossRefGoogle Scholar
  38. 38.
    B. Henderson, G.F. Imbush, Optical spectroscopy of inorganic solids (Clarendon Press, Oxford, 1989)Google Scholar
  39. 39.
    A.A. Gorokhovsky, A.V. Turukhin, R.R. Alfano, W. Phillips, Appl. Phys. Lett. 66, 43 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    V. Hizhnyakov, H. Kaasik, I. Sildos, Phys. Status Solidi B. 234, 644 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physics AS CR, v. v. i.PragueCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations