Applied Physics A

, 124:309 | Cite as

Unified computational model of transport in metal-insulating oxide-metal systems

  • B. D. Tierney
  • H. P. Hjalmarson
  • R. B. Jacobs-Gedrim
  • Sapan Agarwal
  • C. D. James
  • M. J. Marinella


A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift–diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.



This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development (LDRD) Program, including the Hardware Acceleration of Adaptive Neural Algorithms (HAANA) Grand Challenge project. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The authors would like to thank Robert Bondi, Robert Fleming, Xujiao Gao, Denis Mamaluy, and Patrick Mickel for helpful discussions.


  1. 1.
    T.W. Hickmott, J. Appl. Phys. 33, 2669 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    H. Pagnia, N. Sotnik, Phys. Stat. Sol. (a). 108, 11 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    P.R. Mickel et al., Adv. Mater. 26, 4486 (2014)CrossRefGoogle Scholar
  5. 5.
    P.R. Mickel et al., Appl. Phys. Lett. 102, 223502 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    N. Lu et al., J. Phys. D: Appl. Phys. 48, 065101 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Liu et al., Adv. Mater. 28, 10623 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    N. Lu, L. Li, M. Liu, Phys. Rev. B. 91, 195205 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N. Lu, L. Li, M. Liu, Phys. Rev. B. 95, 119904(E) (2017)ADSCrossRefGoogle Scholar
  10. 10.
    D.B. Strukov, R.S. Williams, Appl. Phys. A. 94, 515 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    G. Bersuker et al., J. Appl. Phys. 110, 124518 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Wedig et al., Nat. Nanotechnol. 11, 67 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    M. Moors et al., ACS Nano. 10, 1481 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Wang et al., Nanoscale. 7, 4964 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H.K. Yoo, B.S. Kang, S.B. Lee, Thin Solid Films. 540, 190 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.-J. Lee et al., Nat. Mater. 10, 625 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    W.E. Flannery, S.R. Pollack, J. Appl. Phys. 37, 4417 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    J.G. Simmons, J. Appl. Phys. 34, 2581 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    F.-C. Chiu, Adv. Mat. Sci. Eng. 2014, 578168 (2014)Google Scholar
  20. 20.
    J.P. Strachan et al., IEEE Trans. Elec. Dev. 60(7), 2194 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    W.S. Lau, E.C.S.J. Sol, State Sci. and Tech. 1(6), N139 (2012)CrossRefGoogle Scholar
  22. 22.
    B. Gao et al., IEEE Elec. Dev. Lett. 30(12), 1326 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Zhao et al., IEEE Trans. Elec. Dev. 63(4), 1524 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    H.P. Hjalmarson, R.L. Pease, R.A.B. Devine, IEEE Trans. Nuc. Sci. 55(6), 3009 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Stevens et al., J. Vac. Sci. Tech. A: Vacuum. Surfaces, and Films. 32(2), 021501 (2014)CrossRefGoogle Scholar
  26. 26.
    H.Y. Lee et al., Proc. IEEE Intl. Elec. Dev. Meeting 2008. IEDM 2008 (2009)Google Scholar
  27. 27.
    J.J. Yang et al., Nanotechnology. 20, 215201 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Ieong et al., in International electron devices meeting, IEDM '98, Technical Digest (IEEE, San Francisco, 1998), pp. 733–736Google Scholar
  29. 29.
    R.J. Bondi, B.P. Fox, M.J. Marinella, J. Appl. Phys. 119, 124101 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    R.M. Fleming et al., J. Appl. Phys. 88, 850 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, (2nd Ed.). (Oxford Univ. Press, New York, 1953)zbMATHGoogle Scholar
  32. 32.
    J.J. Yang et al., Appl. Phys. Lett. 97, 232102 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. D. Tierney
    • 1
  • H. P. Hjalmarson
    • 1
  • R. B. Jacobs-Gedrim
    • 1
  • Sapan Agarwal
    • 1
  • C. D. James
    • 1
  • M. J. Marinella
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations