Advertisement

Applied Physics A

, 124:180 | Cite as

Investigation of field emission properties of laser irradiated tungsten

  • Mahreen AkramEmail author
  • Shazia Bashir
  • Sohail Abdul Jalil
  • Muhammad Shahid Rafique
  • Asma Hayat
  • Khaliq Mahmood
Article
  • 201 Downloads

Abstract

Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm2. Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording IV characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler–Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/µm, 1300 to 3490 and 107 to 350 µA/cm2, respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences.

Notes

Acknowledgements

The authors acknowledge Prof. Dr. Riaz Ahmad (Director CASP) and Dr. Tousif Hussain for providing the high voltage power supply and the SEM facility. We also acknowledge Prof. Dr. Anwar Latif (Chairman Physics department UET Lahore) and Shariqa Hassan Butt for providing the XRD facility at Department of Physics UET Lahore.

References

  1. 1.
    J.H. Yu, Y. Rho, H. Kang, H.S. Jung, K.-T. Kang, Int. J. Precis. Eng. Manuf. Green Technol. 2, 333 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Fan, M. Zhong, B. Bai, G. Jin, H. Zhang, Appl. Surf. Sci. 359, 7 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    E.V. Barmina, A.A. Serkov, E. Stratakis, C. Fotakis, V.N. Stolyarov, I.N. Stolyarov, G.A. Shafeev, Appl. Phys. A 106, 1 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M.P. Fiorucci, A.J. López, A. Ramil, Int. J. Adv. Manuf. Tech. 75, 515 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, Q. Zhao, C. Wang, Micromachines. 6, 1444 (2015)Google Scholar
  6. 6.
    A.C.A. Pereira, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, Appl. Phys. A 79, 1433 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A.V. Karabutov, V.D. Frolov, E.N. Loubnin, A.V. Simakin, G.A. Shafeev, Appl. Phys. A 76, 413 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    K. Sun, J.Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, T.P. Russell, J. Appl. Phys. 108, 036102 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K. Locharoenrat, Ferroelectrics 457, (2013) p. 76CrossRefGoogle Scholar
  10. 10.
    Y.H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, J.-H. Ahn, Appl. Phys. Lett. 81, 745 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C.-T. Hsieh, J.-M. Ting, Chem. Phys. Lett. 413, 84 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M. Shakerzadeh, N. Xu, M. Bosman, B.K. Tay, X. Wang, E.H.T. Teo, H. Zheng, H. Yu, Carbon 49, 1018 (2011)CrossRefGoogle Scholar
  13. 13.
    V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, G.A.J. Amaratunga, Thin Solid Films 453–454, 492 (2004)CrossRefGoogle Scholar
  14. 14.
    D.J. Late, V.R. Singh, S. Sinha, M.A. More, K. Dasgupta, D.S. Joag, Appl. Phys. A 97, 905 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Singh, D. Shinde, M.A. More, S. Sinha, Appl. Surf. Sci. 357, 1313 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    T.P.A.C.A. Zuhlke, D.R. Alexander, Opt. Exp. 7, 8460 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S.I. Dolgaev, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, G.A. Shafeev, Appl. Phys. A 83, 417 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Kawakami, E. Ozawa, Appl. Surf. Sci. 218, 176 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kawakami, E. Ozawa, Appl. Phys. A 74, 59 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M. Akram, S. Bashir, M.S. Rafique, A. Hayat, K. Mahmood, A. Dawood, M.F. Bashir, Appl. Phys. A 119, 859 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S. Bashir, N. Farid, K. Mahmood, M.S. Rafique, Appl. Phys. A 107, 203 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    U. Kalsoom, S. Bashir, N. Ali, D. Yousaf, J. Laser Appl. 26, 022003 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Mahmood, N. Farid, I.M. Ghauri, N. Afzal, Y. Idrees, F.E. Mubarik, Phys. Scr. 82, 045606 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L.Y.Z. Dahuan, C. Junling, Z. Zhangjian, Y. Rong, Plasma Sci. Tech. 15, 605 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Kajita, N. Ohno, Y. Hirahata, M. Hiramatsu, Fusion Eng. Des. 88, 2842 (2013)CrossRefGoogle Scholar
  26. 26.
    S.S. Harilal, N. Farid, O. El-Atwani, H. Ding, A. Hassanein, Nucl. Fusion 54, 1 (2014)Google Scholar
  27. 27.
    N. Ohno. S. Kajita, S. Takamura, W. Sakaguchi, D. Nishijima, Appl. Phys. Lett. 91, 1 (2007)Google Scholar
  28. 28.
    M. Trapatseli, D. Vernardou, P. Tzanetakis, E. Spanakis, ACS Appl. Mater. Interfaces 3, 2726 (2011)CrossRefGoogle Scholar
  29. 29.
    W.S.S. Kajita, N. Ohno, N. Yoshida, T. Saeki, Nucl. Fusion. 49, 1 (2009)Google Scholar
  30. 30.
    R.H. Fowler, L. Nordheim, Proc. R. Soc. London Ser A. 119, 173 (1928)ADSCrossRefGoogle Scholar
  31. 31.
    K. Yusuke, K. Keigo, O. Takeshi, N. Keisuke, T. Kentaro, N. Masayuki, Jpn. J. Appl. Phys. 46, 6250 (2007)CrossRefGoogle Scholar
  32. 32.
    A.K. Singh, J. Kumar, J. Appl. Phys. 113, 053303 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    H. Yin, K. Yu, C. Song, Z. Wang, Z. Zhu, Nanoscale 6, 11820 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P.M. Costa, M. Song, B. Huang, C.T. Liu, Adv. Mater. 21, 2387 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Lu, A. Ogino, B. Liang, J. Liu, M. Nagatsu, Jpn. J. Appl. Phys. 48, 090201–090206 (2009)CrossRefGoogle Scholar
  36. 36.
    H. D -, Kim, Appl. Phys A 108, 981 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Baek, K. Yong, J. Phys. Chem. C 111, 1213 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Shimizu, M. Hashida, Y. Miyasaka, S. Tokita, S. Sakabe, Appl. Phys. Lett. 103, 174106 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    B.M. Cox, J. Phys. D Appl. Phys. 8, 2065 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    R.J. Noer, Appl. Phys. A 28, 1 (1982)ADSCrossRefGoogle Scholar
  41. 41.
    A. Khademi, R. Azimirad, Y.-T. Nien, A.Z. Moshfegh, J. Nanopart. Res. 13, 115 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Liu, X. Meng, X. Wan, Z. Wang, H. Huang, H. Long, Z. Song, G. Fang, Nanoscale Res. Lett. 9, 1 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    M. Ojima, S. Hiwatashi, H. Araki, A. Fujii, M. Ozaki, K. Yoshino, Appl. Phys. Lett. 88, 053103 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A.V. Arkhipov, P.G. Gabdullin, N.M. Gnuchev, S.N. Davydov, S.I. Krel, B.A. Loginov, St. Petersb. Polytech. Uni. J. Phys. Math. 1, 47 (2015)Google Scholar
  45. 45.
    Y. Shen, S. Deng, Y. Zhang, F. Liu, J. Chen, N. Xu, Nanoscale Res. Lett. 7, 1 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    L.H. Chan, K.H. Hong, D.Q. Xiao, W.J. Hsieh, S.H. Lai, H.C. Shih, T.C. Lin, F.S. Shieu, K.J. Chen, H.C. Cheng, Appl. Phys. Lett. 82, 4334 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    K.S. Yeong, J.T.L. Thong, J. Appl. Phys. 100, 114325 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahreen Akram
    • 1
    Email author
  • Shazia Bashir
    • 1
  • Sohail Abdul Jalil
    • 2
  • Muhammad Shahid Rafique
    • 3
  • Asma Hayat
    • 1
  • Khaliq Mahmood
    • 1
  1. 1.Centre for Advanced Studies in PhysicsGovernment College UniversityLahorePakistan
  2. 2.Department of Electrical EngineeringInformation Technology UniversityLahorePakistan
  3. 3.Department of PhysicsUniversity of Engineering and Technology, LahoreLahorePakistan

Personalised recommendations