Skip to main content
Log in

Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22 (1998)

    Article  Google Scholar 

  2. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, (2006)

  3. A. Carlos, P. De Araujo, L.D. Mcmillan, B.M. Melnick, J.D. Cuchiaro, J.F. Scott, Ferroelectrics 104, 241 (1990)

    Article  Google Scholar 

  4. N. Ramadass, Mater. Sci. Eng 36, 231 (1978)

    Article  Google Scholar 

  5. K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Top. Appl. Phys 105, 1 (2007)

    Article  Google Scholar 

  6. K. Uchino, Smart Mater. Struct 7, 273 (1998)

    Article  ADS  Google Scholar 

  7. A. Kumar, A. Rao, M. Goswami, B.R. Singh, Mater. Sci. Semicond. Process 16(6), 1603 (2013)

    Article  Google Scholar 

  8. R.M. Verma, A. Rao, B.R. Singh, Appl. Phys. Lett. 104(9), 092907 (2014)

    Article  ADS  Google Scholar 

  9. W.C. Shih, P.C. Juan, J.Y.M. Lee, J. Appl. Phys 103(9), 094110 (2008)

    Article  ADS  Google Scholar 

  10. M. Liu, H.K. Kim, J. Blachere, J. Appl. Phys 91(9), 5985 (2002)

    Article  ADS  Google Scholar 

  11. C.Y. Chang, T.P.C. Juan, J.Y.M. Lee, Appl. Phys. Lett. 88(7), 072917 (2006)

    Article  ADS  Google Scholar 

  12. P. Singh, A.N. Bhatt, A. Bansal, R.K. Singh, B.R. Singh, Ferroelectrics 504, 139 (2016)

    Article  Google Scholar 

  13. Y.C. Yeo, T.J. King, C. Hu, Appl. Phys. Lett. 81, 2091 (2002)

    Article  ADS  Google Scholar 

  14. M. Okuyama, in Ferroelectric-Gate Field Effect Transistor Memories, ed. by B. E. By, H. Park, M. Ishiwara, S. Okuyama, S. M. Sakai, Yoon (Springer, Netherlands, 2016), pp. 3–20

    Chapter  Google Scholar 

  15. J. Robertson, Eur. Phys. J. Appl. Phys 28, 265 (2004)

    Article  ADS  Google Scholar 

  16. S. Guha, E. Gusev, H. Okorn-Schmidt, M. Copel, L. Ragnarsson, N. Bojarczuk, P. Ronsheim, Appl. Phys. Lett. 81, 2956 (2002)

    Article  ADS  Google Scholar 

  17. D.G. Schlom, J.H. Haeni, MRS Bull 27, 198 (2002)

    Article  Google Scholar 

  18. L.E. Black, K.R. McIntosh, Appl. Phys. Lett. 100, 202107 (2012)

    Article  ADS  Google Scholar 

  19. J. Kolodzey, E.A. Chowdhury, T.N. Adam, G. Qui, I. Rau, J.O. Olowolafe, J.S. Suehle, Y. Chen, IEEE Trans. Electron Devices 47, 121 (2000)

    Article  ADS  Google Scholar 

  20. G. He, Z. Sun, High-K Gate Dielectrics for CMOS Technology (2012), p. 478

  21. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)

    Article  ADS  Google Scholar 

  22. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys 89, 5243 (2001)

    Article  ADS  Google Scholar 

  23. M.H. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys 71, 1421 (1992)

    Article  ADS  Google Scholar 

  24. S. Iakovlev, C.-H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys 97, 94901 (2005)

    Article  Google Scholar 

  25. K.K. Shih, D.B. Dove, J. Vac. Sci. Technol. A Vac. Surf. Film 12, 321 (1994)

    Article  ADS  Google Scholar 

  26. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Opt. Mater. (Amst) 34, 893 (2012)

    Article  ADS  Google Scholar 

  27. K. Tajima, H. Hwang, M. Sando, K. Niihara, J. Am. Ceram. Soc. 83, 651 (2004)

    Article  Google Scholar 

  28. K. Hardtl, J. Am. Ceram. Soc. 64, 283 (1981)

    Article  Google Scholar 

  29. J.F. Fernandez, E. Nieto, C. Moure, P. Duran, R.E. Newnham, J. Mater. Sci 30, 5399 (1995)

    Article  ADS  Google Scholar 

  30. C.V. Ramana, S. Utsunomiya, R.C. Ewing, U. Becker, V.V. Atuchin, V.S. Aliev, V.N. Kruchinin, Appl. Phys. Lett. 92, 11917 (2008)

    Article  ADS  Google Scholar 

  31. V. Atuchin, V. Kruchinin, Y. Hoong Wong, K. Yew Cheong, Mater. Lett 105, 72 (2013)

    Article  Google Scholar 

  32. I. Boerasu, L. Pintilie, M. Pereira, M.I. Vasilevskiy, M.J.M. Gomes, J. Appl. Phys 93, 4776 (2003)

    Article  ADS  Google Scholar 

  33. G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, Sol. Energy Mater. Sol. Cells 90, 3438 (2006)

    Article  Google Scholar 

  34. B. Hoex, J. Schmidt, M.C.M. van de Sanden, W.M.M. Kessels, Crystalline silicon surface passivation by the negative-charge-dielectric Al2O3. 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA (IEEE, Piscataway, 2008), pp. 1–4. https://doi.org/10.1109/PVSC.2008.4922635

  35. C. Van de Walle, J. Neugebauer, Nature 423, (2003)

  36. J. Wang, G. Wang, J. Wang, X. Chen, H. Nie, F. Cao, X. Dong, Ceram. Int. 42, (2016)

  37. C. Sun, S. Chen, M. Yang, A. Chin, J. Electrochem. Soc 148(11), F203 (2001)

    Article  Google Scholar 

  38. A. Chin, M. Yang, C. Sun, S. Chen, IEEE Electr. Device L 22(7), 336 (2001)

    Article  ADS  Google Scholar 

  39. S. Cui, D. Eun, B. Marinkovic, C.Y. Peng, X. Pan, X. Sun, H. Koser, T. Ma, IEEE international memory workshop (2010), pp. 1–2

  40. Z. Ma, A. Jiang, Ferroelectrics 401(1), 129 (2010)

    Article  Google Scholar 

  41. A.Q. Jiang, H.J. Lee, G.H. Kim, C.S. Hwang, Adv. Mater 21(28), 2870 (2009)

    Article  Google Scholar 

  42. S.M. Koo, S. Khartsev, C.M. Zetterling, A.M. Grishin, M. Ostling, Appl. Phys. Lett. 81(5), 895 (2002)

    Article  ADS  Google Scholar 

  43. S.M. Koo, S. Khartsev, C.M. Zetterling, A. Grishin, M. Ostling, Appl. Phys. Lett. 83(19), 3975 (2003)

    Article  ADS  Google Scholar 

  44. S.H. Kim, C.E. Kim, Y.J. Oh, Thin Solid Films 305(1–2), 321 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. G. C. Nandi, Director, Indian Institute of Information Technology-Allahabad for his constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Jha, R.K., Singh, R.K. et al. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications. Appl. Phys. A 124, 92 (2018). https://doi.org/10.1007/s00339-018-1555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1555-z

Navigation