Advertisement

Simulation of wave propagation inside a human eye: acoustic eye model (AEM)

Abstract

The design and development of the acoustic eye model (AEM) is reported. The model consists of a computer-based simulation that describes the propagation of mechanical disturbance inside a simplified model of a human eye. The capabilities of the model are illustrated with examples, using different laser-induced initial loading conditions in different geometrical configurations typically occurring in ophthalmic medical procedures. The potential of the AEM is to predict the mechanical response of the treated eye tissue in advance, thus complementing other preliminary procedures preceding medical treatments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    D.V. Palanker, M.S. Blumenkranz, M.F. Marmor, Arch. Ophthalmol. 129, 1613 (2011)

  2. 2.

    M.H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, 3rd. (Springer, Berlin, 2004)

  3. 3.

    A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

  4. 4.

    D. Horvat, R. Petkovšek, J. Možina, Appl. Phys. B 88, 463 (2007)

  5. 5.

    D. Horvat, R. Petkovšek, J. Možina, Meas. Sci. Technol. 21, 035301 (2010)

  6. 6.

    R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, R. Birngruber, J. Biomed. Opt. 17, 061219 (2012)

  7. 7.

    G.N. Sankin, Y. Zhou, P. Zhong, J. Acoust. Soc. Am. 123, 4071 (2008)

  8. 8.

    M. Halilovič, S. Issa, M. Wallin, H. Hallberg, M. Ristinmaa, Int. J. Mech. Sci. 111–112, 24 (2016)

  9. 9.

    T. Rossi, B. Boccassini, L. Esposito, C. Clemente, M. Iossa, L. Placentino, N. Bonora, Invest. Ophthalmol. Vis. Sci. 53, 8057 (2012)

  10. 10.

    T. Rossi, B. Boccassini, L. Esposito, M. Iossa, A. Ruggiero, C. Tamburrelli, N. Bonora, Invest. Ophthalmol. Vis. Sci. 52, 3994 (2011)

  11. 11.

    A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys. B 68, 271 (1999)

  12. 12.

    E.-A. Brujan, A. Vogel, J. Fluid Mech. 558, 281 (2006)

  13. 13.

    W. Lauterborn, T. Kurz, Rep. Prog. Phys. 73, 106501 (2010)

  14. 14.

    W. Lauterborn, A. Vogel, in Bubble Dynamics and Shock Waves, ed. by C. F. Delale ed. (Springer, Berlin, 2013), pp. 67–103

  15. 15.

    O. Supponen, P. Kobel, D. Obreschkow, M. Farhat, Phys. Fluids 27, 091113 (2015)

  16. 16.

    A.G. Doukas, A.D. Zweig, J.K. Frisoli, R. Birngruber, T.F. Deutsch, Appl. Phys. B 53, 237 (1991)

  17. 17.

    G.N. Sankin, Acoust. Phys. 52, 93 (2006)

  18. 18.

    Water—Thermodynamic Properties. (The Engineering ToolBox, 2017). http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html. Accessed 14 Dec 2017

  19. 19.

    C.L. de Korte, A.F.W. van der Steen, J.M. Thijssen, Ultrasound Med. Biol 20, 471 (1994)

  20. 20.

    H. Azhari, Basics of Biomedical Ultrasound for Engineers. (Wiley, Hoboken, 2010)

  21. 21.

    H. Wang, P.L. Prendiville, P.J. McDonnell, W.V. Chang, J. Biomech. 29, 1633 (1996)

  22. 22.

    J. Kampmeier, B. Radt, R. Birngruber, R. Brinkmann, Cornea 19, 355 (2000)

  23. 23.

    S. Dixon, T. Harrison, Y. Fan, P.A. Petcher, J. Phys. D Appl. Phys. 45, 175103 (2012)

  24. 24.

    S. Dixon, T.J. Harrison, P.A. Petcher, Appl. Phys. Lett. 97, 054101 (2010)

  25. 25.

    N.C.R. Holme, B.C. Daly, M.T. Myaing, T.B. Norris, Appl. Phys. Lett. 83, 392 (2003)

  26. 26.

    F. Decremps, M. Gauthier, S. Ayrinhac, L. Bove, L. Belliard, B. Perrin, M. Morand, G. Le Marchand, F. Bergame, J. Philippe, Ultrasonics 56, 129 (2015)

  27. 27.

    T. Feurer, N.S. Stoyanov, D.W. Ward, K.A. Nelson, Phys. Rev. Lett. 88, 257402 (2002)

  28. 28.

    T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, K.A. Nelson, Phys. Rev. Lett. 106, 214503 (2011)

  29. 29.

    A.A. Kolomenskii, S.N. Jerebtsov, H.A. Schuessler, Opt. Lett. 30, 2019 (2005)

  30. 30.

    S. Feng, H.G. Winful, Opt. Lett. 26, 485 (2001)

  31. 31.

    G. Hawlina, B. Drnovšek-Olup, J. Možina, P. Gregorčič, Appl. Phys. A 122, 118 (2016)

  32. 32.

    S. Siano, R. Pini, F. Rossi, R. Salimbeni, P.G. Gobbi, Appl. Phys. Lett. 72, 647 (1998)

  33. 33.

    R.R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M.S. Berlin, Ophthalmology 108, 1070 (2001)

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core Funding No. P2-0270, No. P2-0392 and No. P2-0263, and Projects No. L2-6780 and No. L2-8183). The article is in part the result of work in the implementation of the SPS Operation entitled Building blocks, tools and systems for future factories—GOSTOP. The investment is co-financed by the Republic of Slovenia and the European Union from the European Regional Development Fund.

Author information

Correspondence to T. Požar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 6330 KB)

Supplementary material 1 (WMV 6330 KB)

Supplementary material 2 (WMV 5478 KB)

Supplementary material 2 (WMV 5478 KB)

Supplementary material 3 (WMV 4861 KB)

Supplementary material 3 (WMV 4861 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Požar, T., Halilovič, M., Horvat, D. et al. Simulation of wave propagation inside a human eye: acoustic eye model (AEM). Appl. Phys. A 124, 112 (2018). https://doi.org/10.1007/s00339-018-1552-2

Download citation