Applied Physics A

, 124:116 | Cite as

Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

  • T. Pflug
  • J. Wang
  • M. Olbrich
  • M. Frank
  • A. Horn


To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index \({\tilde{n}}\) and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at \(\lambda _{\mathrm{probe}}= 440\, \hbox {nm}\) and three fluences of the single-pulsed pump radiation at \(\lambda _{\mathrm{pump}}= 800\,\hbox {nm}\) generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.



The authors gratefully acknowledge the financial support of the joint project no. 8222501 from the Staatsministerium für Wissenschaft und Kunst (SMWK).


  1. 1.
    K. Sugioka, Ultrafast Laser Processing: From Micro- to Nanoscale: From Micro- to Nanoscale (CRC Press, Hoboken, 2013)Google Scholar
  2. 2.
    A. Horn, Ultra-Fast Material Metrology (Wiley-VCH, Weinheim, 2009)CrossRefGoogle Scholar
  3. 3.
    H. Fujiwara, Spectroscopic Ellipsometry (Wiley, Chichester, UK, 2007)CrossRefGoogle Scholar
  4. 4.
    H.G. Tompkins (ed.), Handbook of Ellipsometry (Andrew, Norwich, 2010)Google Scholar
  5. 5.
    S. Rapp, M. Kaiser, M. Schmidt, H.P. Huber, Opt. Express 24, 17572 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    R.D. Murphy, B. Torralva, S.M. Yalisove, Appl. Phys. Lett. 102, 181602 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Ivanov, V.P. Lipp, V.P. Veiko, E. Yakovlev, B. Rethfeld, M.E. Garcia, Appl. Phys. A 117, 2133 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    K.J. Schrider, B. Torralva, S.M. Yalisove, Appl. Phys. Lett. 107, 124101 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Liu, R. Stock, W. Rudolph, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies (OSA Washington, D.C., 2004), IWA4Google Scholar
  13. 13.
    C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, S99–S107 (1999)Google Scholar
  15. 15.
    C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2011)zbMATHGoogle Scholar
  16. 16.
    S.-S. Wellershoff, Untersuchungen zur Energierelaxationsdynamik in Metallen nach Anregung mit ultrakurzen Laserpulsen (PhD thesis, Berlin, 2000)Google Scholar
  17. 17.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    M. Olbrich, E. Punzel, R. Roesch, R. Oettking, B. Muhsin, H. Hoppe, A. Horn, Appl. Phys. A 122, 648 (2016)CrossRefGoogle Scholar
  19. 19.
    N.A. Inogamov, V.A. Khokhov, Y.V. Petrov, V.V. Zhakhovsky, K.P. Migdal, D.K. Ilnitsky, N. Hasegawa, M. Nishikino, M. Yamagiwa, M. Ishino, T. Kawachi, A.Y. Faenov, T.A. Pikuz, M. Baba, Y. Minami, T. Suemoto, in Shock Compression of Condensed Matter: Proc. of Conf. of APS, Topical Group on Shock Compression of Condensed Matter, 70012 (2017)Google Scholar
  20. 20.
    M. Olbrich, E. Punzel, P. Lickschat, S. Weißmantel, A. Horn, Phys. Procedia 83, 93 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    W. Wendelen, B.Y. Mueller, D. Autrique, B. Rethfeld, A. Bogaerts, J. Appl. Phys. 111, 113110 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Wei, Z. Sun, F. Zhang, W. Xu, Y. Wang, F. Zhou, F. Gan, Chem. Phys. Lett. 392, 415 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    T.C. Choy, Effective medium theory: Principles and applications: Principles and applications (Clarendon Press, Oxford, 2007)Google Scholar
  24. 24.
    K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde, Phys. Rev. B 58, R11805–R11808 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laserinstitut Hochschule MittweidaMittweidaGermany
  2. 2.Ruhr-Universität Bochum, Laser and PhotonicsBochumGermany

Personalised recommendations